
Quantum Dynamic Programming
Jeongrak Son, Marek Gluza, Ryuji Takagi, Nelly Ng

arXiv:2403.09187

Nanyang Tech Uni, Singapore Uni Tokyo, Japan

Outline
• Classical dynamic programming and their role in algorithms

• The challenge of quantum recursions

• QDP as a resolution to quantum recursions

• Applications and outlook

Examples of classical recursive algorithms

Classical Dynamic Programming
• The breaking down of a complex problem into

subproblems, and storing the corresponding solutions
to increase computational efficiency

• Ex: calculate , the -th number in the Fibonacci
sequence, defined as with

• Naive computation (without memory) requires the
computation of and , every time a
Fibonacci number is called (both blue and red nodes
need to be computed upon use)

• Dynamic computation (with memory) computes each
 only once, stores in an internal memo, and calls it

the next time it is needed.

F(n) n
F(n) = F(n − 1) + F(n − 2),

F(0) = F(1) = 1

F(n − 1) F(n − 2)

F(n)

Classical Dynamic Programming
• The breaking down of a complex problem into

subproblems, and storing the corresponding solutions
to increase computational efficiency

• Ex: calculate , the -th number in the Fibonacci
sequence, defined as with

• Naive computation (without memory) requires the
computation of and , every time a
Fibonacci number is called (both blue and red nodes
need to be computed upon use)

• Dynamic computation (with memory) computes each
 only once, stores in an internal memo, and calls it

the next time it is needed.

F(n) n
F(n) = F(n − 1) + F(n − 2),

F(0) = F(1) = 1

F(n − 1) F(n − 2)

F(n)

Computational steps required : O(2n)

Computational steps required : !
At the cost of memory…

O(n)
O(n)

Quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions:

๏ The th recursive step is unitary and depends on the previous

result .

๏ Initial state and are given (not necessarily known)

๏ The exact form of as a function of is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ

Quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions:

๏ The th recursive step is unitary and depends on the previous

result .

๏ Initial state and are given (not necessarily known)

๏ The exact form of as a function of is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ

Can we even perform a quantum computation
on this naively? We need … all the
way up to , but we don’t really know the

intermediate states!

Û(ρ1), Û(ρ2),
Û(ρn−1)

Examples of quantum recursions
1. Grover search |ψ⟩ ↦ eiβLψeiαLτ⋯eiβ1ψeiα1τ|ψ⟩ ∼ |τ⟩

Yoder, Low, and Chuang, PRL 113, 210501 (2014)

Nested formulation:

|ψ0⟩ ↦ |ψ1⟩ = eiβ(0)
L ψ0eiα(0)

L τ⋯eiβ(0)
1 ψ0eiα(0)

1 τ|ψ0⟩

|ψ1⟩ ↦ |ψ2⟩ = eiβ(1)
L ψ1eiα(1)

L τ⋯eiβ(1)
1 ψ1eiα(1)

1 τ|ψ1⟩

⋯ |τ⟩with equivalent circuit depth as above,
if the recursion is done via unfolding

Examples of quantum recursions

Gluza, Quantum 8, 1316 (2024)

2. Double braket iterations, inspired by Wegner flows
General technique to iteratively diagonalize an unknown state in the
energy eigenbasis, useful in eigenstate preparation tasks

ρ

: unitary channel induced by for some diagonal matrix
, can be done via unfolding

es[D̂,ρi]

DD, ρi

ρ0 D, ρ0 ρ1 D, ρ1 ρ2
(…)D, ρ2 D, ρN−1

 converges to a diagonal state for small ρ∞ s

Quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions:

๏ The th recursive step is unitary and depends on the previous

result .

๏ Initial state and are given (not necessarily known)

๏ The exact form of as a function of is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ

Quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions:

๏ The th recursive step is unitary and depends on the previous

result .

๏ Initial state and are given (not necessarily known)

๏ The exact form of as a function of is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ

Can we even perform a quantum computation
on this naively? We need … all the
way up to , but we don’t really know the

intermediate states!

Û(ρ1), Û(ρ2),
Û(ρn−1)

What is this unfolding business?

Implementing the next recursion step
This is indeed possible sometimes. Let’s look at the particular example when

Û(ρ) = eisρ

๏ Observe that since we do know , and furthermore , we

also have that , and is possible to implement

without knowing — we just need to call the unitary and its inverse.

๏ This example is trivial on its own….

๏ However, is not so trivial, and yet we still have

.

ρ0 ρ1 = Û(ρ0) ρ0 (Û(ρ0))†

eisρ1 = Û(ρ0)eisρ0(Û(ρ0))† Û(ρ1)
ρ1 Û(ρ0)

Û(ρ) = V1 ⋅ eisρ ⋅ V2

eisρ1 = Û(ρ0) ⋅ eisρ0 ⋅ Û(ρ0)†

Remember: we assume we are given and ,
our goal is to implement

ρ0 Û(ρ0)

Û(ρ1)

Implementing the next recursion step

๏ For a more general unitary , we still can do
this: is possible if we call the unitary a number of times.

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ1) Û(ρ0) 2L

How about … ?Û(ρ2), Û(ρ3), Û(ρn−1)

Sticking with the more general example of , to
execute ,

๏ we call a number of times,

๏ each call for is done by calling for times,

๏ Hence, the implementation of requires calls of . Similarly,

 requires calls of …

๏ In other words,

๏ steps (i.e. circuit depth) is required for

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ2)

Û(ρ1) 2L
Û(ρ1) Û(ρ0) 2L

Û(ρ2) 4L2 Û(ρ0)

Û(ρ3) 8L3 Û(ρ0)

eisρn = Û(ρn−1)⋯Û(ρ0)eisρ0(Û(ρ0))†⋯(Û(ρn−1))†

O((2L)N) Û(ρN−1)

unfolding, reminiscent of classical
naive methods without memory

How about … ?Û(ρ2), Û(ρ3), Û(ρn−1)

Sticking with the more general example of , to
execute ,

๏ we call a number of times,

๏ each call for is done by calling for times,

๏ Hence, the implementation of requires calls of . Similarly,

 requires calls of …

๏ In other words,

๏ steps (i.e. circuit depth) is required for

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ2)

Û(ρ1) 2L
Û(ρ1) Û(ρ0) 2L

Û(ρ2) 4L2 Û(ρ0)

Û(ρ3) 8L3 Û(ρ0)

eisρn = Û(ρn−1)⋯Û(ρ0)eisρ0(Û(ρ0))†⋯(Û(ρn−1))†

O((2L)N) Û(ρN−1)Surely it’ll be faster to compute this if
we have a dynamic version of

quantum computation?

unfolding, reminiscent of classical
naive methods without memory

Can we program quantum dynamically?

To do so, we need to consider circuits that allow us to take in instructions
encoded in the form of quantum states ,ρk

Û(ρk)σÛ(ρk)†

Naive method: learn e.g.
tomography, and then compile
via Solovay-Kitaev.

ρ
Û(ρ)

ρk

σ

Surely it’ll be faster to compute this if
we have a dynamic version of

quantum computation?

Surely there are better
ways to use quantum-

mechanically
encoded instructions?

Yes, DME is a better way!

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

ℰ(ρ)(σ) = Tr1[e−is ̂S(ρ ⊗ σ)eis ̂S]
= 𝖠2σTr[ρ] − i𝖠𝖡[ρ, σ] + O(s2)

Let and . Then𝖠 = cos(s) 𝖡 = cos(s)

On the other hand, we also know that

e−isρσeisρ = σ − is[ρ, σ] + O(s2)

ρ

σ eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

Density Matrix Exponentiation

Suppose we want
where

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ

In other words,
∥ℰ(ρ)

s (∙) − e−isρ(∙)eisρ∥ = O(s2)

Yes, DME is a better way!

σ

ρ

eis′
̂S ℰ(ρ)(σ)

ρ

eis′
̂S

ρ

eis′
̂S…

M times

To achieve a higher accuracy, one can use more copies, e.g. copies of , with
smaller values of :

M ρ
s′ = s/M

∥ℰ(ρ)
s/M ∘ ⋯ ∘ ℰ(ρ)

s/M(∙) − e−isρ(∙)eisρ∥ = O(s2/M)

Cost: circuit width (preparation of states is still necessary, although we bypass explicit learning)

ϵ ∝ M−1, or

ρ

σ

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

In other words,

∥ℰ(ρ)
s (∙) − e−isρ(∙)eisρ∥ = O(s2)

Yes, DME is a better way!
Density Matrix Exponentiation

Suppose we want
where

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ

Optimality of DME routine shown for sample
complexity in Hamiltonian simulation, in
comparison to tomographic methods
Kimmel et al., npj QI 3, 13 (2017)

Wei. et al, arXiv:2308.07956 (2023)

Suppose we want to implement the
unitary channel induced by , ei𝒩(ρ)

Generalizations of DME also exist!

ρ

σ eiN̂

N̂ : partial transpose of the Choi
matrix of 𝒩

ℰ(𝒩,ρ)(σ)

Hermitian-preserving Map Exponentiation

Supress errors again by using multiple copies

∥ℰ(𝒩,ρ)(∙) − e−i𝒩(ρ)(∙)ei𝒩(ρ)∥ = O(∥N̂∥2
∞)

In other words,
Then is a good approximation.ℰ(𝒩,ρ)(σ)

Let’s recall our recursive problem…
๏ With unfolding, in order to implement the n-th recursion unitary alone,

 steps (i.e. exponential circuit depth) is required.

๏ With quantum instructions, if the recursion unitary has the form of

where each are general Hermiticity-preserving maps, then implementing
 requires copies of and circuit of depth

- preparing multiple copies of still required circuit depth, so

the replacement of the last step only reduces the overall depth by

Û(ρN−1)

O((2L)N)

𝒩i

Û(ρN) O(ϵ−1L) ρN O(ϵ−1L)
ρN−1 O((2L)N−1)

1/2L

Û(ρ) = ̂VLe−i𝒩L(ρ) ̂VL−1⋯ ̂V1e−i𝒩1(ρ) ̂V0

Let’s recall our recursive problem…
๏ With unfolding, in order to implement the n-th recursion unitary alone,

 steps (i.e. exponential circuit depth) is required.

๏ With quantum instructions, if the recursion unitary has the form of

where each are general Hermiticity-preserving maps, then implementing
 requires copies of and circuit of depth

- preparing multiple copies of still required circuit depth, so

the replacement of the last step only reduces the overall depth by

Û(ρN−1)

O((2L)N)

𝒩i

Û(ρN) O(ϵ−1L) ρN O(ϵ−1L)
ρN−1 O((2L)N−1)

1/2L

Û(ρ) = ̂VLe−i𝒩L(ρ) ̂VL−1⋯ ̂V1e−i𝒩1(ρ) ̂V0

But surely we can now apply
this to the preparation of !ρN−1

Now we have a quantum version
of dynamic programming,
decreasing circuit depth

(computational time)
exponentially at the cost of

width (memory)! Not so fast!
There are caveats to this…

Errors propagate
๏ Recall that in order to drastically reduce circuit depth, we implement

approximately via DME/HME. To do that, we need to prepare multiple copies
of efficiently, by implementing approximately, ……

๏ In other words, we prepared in every step due to implementation

error, which has the potential to accumulate!

๏ The same exponential blow-up happens when unfolding unitary operations

are not perfect

Û(ρN−1)

ρN−1 Û(ρN−2)

ρ̃N−1 ≈ ρN−1

Oh no! What can we do about this?

Resolution to errors: 1) they don’t always blow-up

Theorem (high level description)

๏ If the recursion unitary fulfills a stability criteria,

๏ Then QDP can implement recursions with final error and total circuit
of depth — no exponential blowing up of errors

๏ If your initial state (and therefore target final state) is furthermore pure,
then depth width suffices

Û(ρ)

N ϵ
O(N2ϵ−1)

O(Nϵ−1) eO(N)ϵ−N

๏ Stability criteria: given any , the sequence of states generated by the recursion
 has a unique fixed-point , such that the distance of to is

contracting at some finite speed

ρ0 {ρi}i
ρi = Ui−1ρi−1U†

i−1 τ ρi τ

Resolution to errors: 1) they don’t always blow-up

Theorem (high level description)

๏ If the recursion unitary fulfills a stability criteria,

๏ Then QDP can implement recursions with final error and total circuit
of depth — no exponential blowing up of errors

๏ If your initial state (and therefore target final state) is furthermore pure,
then depth width suffices

Û(ρ)

N ϵ
O(N2ϵ−1)

O(Nϵ−1) eO(N)ϵ−N

๏ Stability criteria: given any , the sequence of states generated by the recursion
 has a unique fixed-point , such that the distance of to is

contracting at some finite speed

ρ0 {ρi}i
ρi = Ui−1ρi−1U†

i−1 τ ρi τ

What we need:
For any , s.t.

 and
, where for

Proof idea:
• unitary errors get suppressed by a factor after

each iteration
• non-unitary errors accumulate linearly, use

subroutines to supress them

ρ spec(ρ) = spec(τ)
∥τ − Û(ρ)(ρ)∥ ≤ h(∥τ − ρ∥) < ∥τ − ρ∥
h(δ + ϵ) ≤ h(δ) + rϵ r < 1 δ < δ⋆, ϵ < ϵ⋆

r

Cirac, Ekert, and Macchiavello, PRL 82, 4344 (1999)

Resolution to errors: 2) QDP offers a hybrid approach

Suppose a quantum processor with specifications of circuit depth and volume.

๏ Using unfolding only, there is a maximum achievable recursion due to
depth limitations. Using QDP only, there is a maximum achievable recursion

 due to width limitations

๏ A hybrid approach allows for:

๏ Implementing iterations with unfolding — such circuits are run in
parallel; depth scales as

๏ iterations are subsequently implemented with QDP

๏ Obtains , with recursive steps with total circuit depth:

ρN1

ρN2

N1 eO(N2)

eO(N1)

N2

ρN N ≈ N1 + N2
poly(N2)eO(N1)

Take-home message
๏ Quantum recursions are expensive…… you pay either with circuit depth

(unfolding), or width.

๏ QDP gives us an additional tool to make full use of a quantum processor,

trading depth at the cost of width.

๏ Will this really be useful? I don’t know, but we have plans to find out…

๏ Marek is outlining a roadmap on systematic usage of double-brackets

๏ Integrate DB & QDP onto QIBO (open source middleware for

quantum computing)

๏ Plans for whitepaper on DB

๏ Singapore has long-term ambitious plans in building quantum computers

