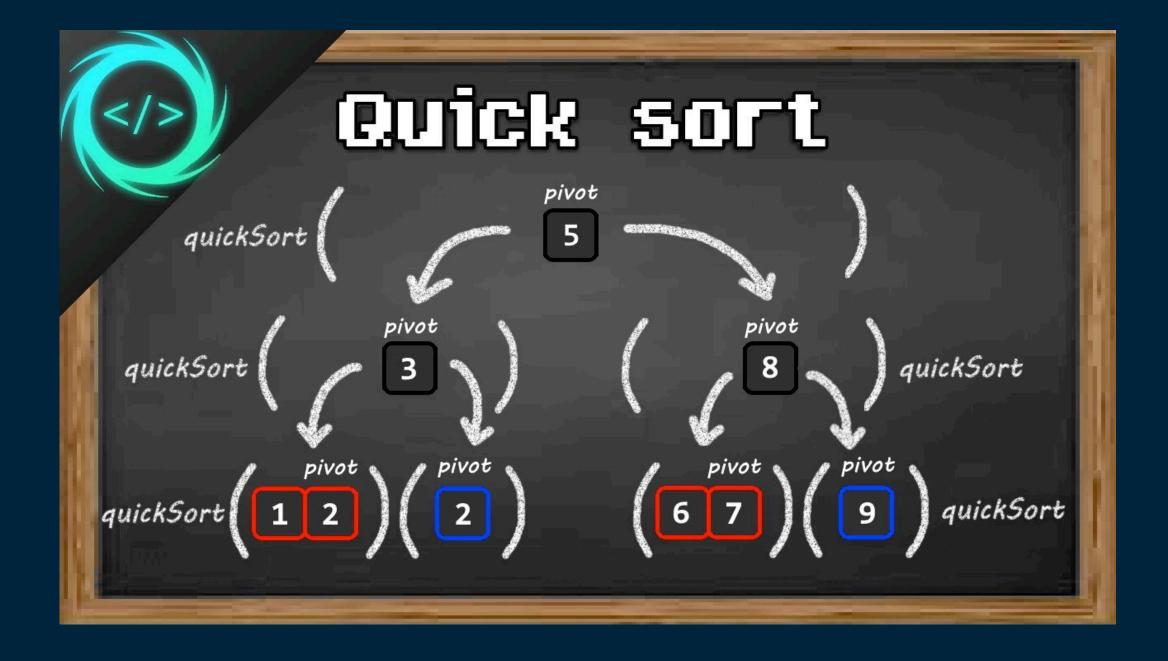
Quantum Dynamic Programming Jeongrak Son, Marek Gluza, Ryuji Takagi, Nelly Ng Nanyang Tech Uni, Singapore Uni Tokyo, Japan

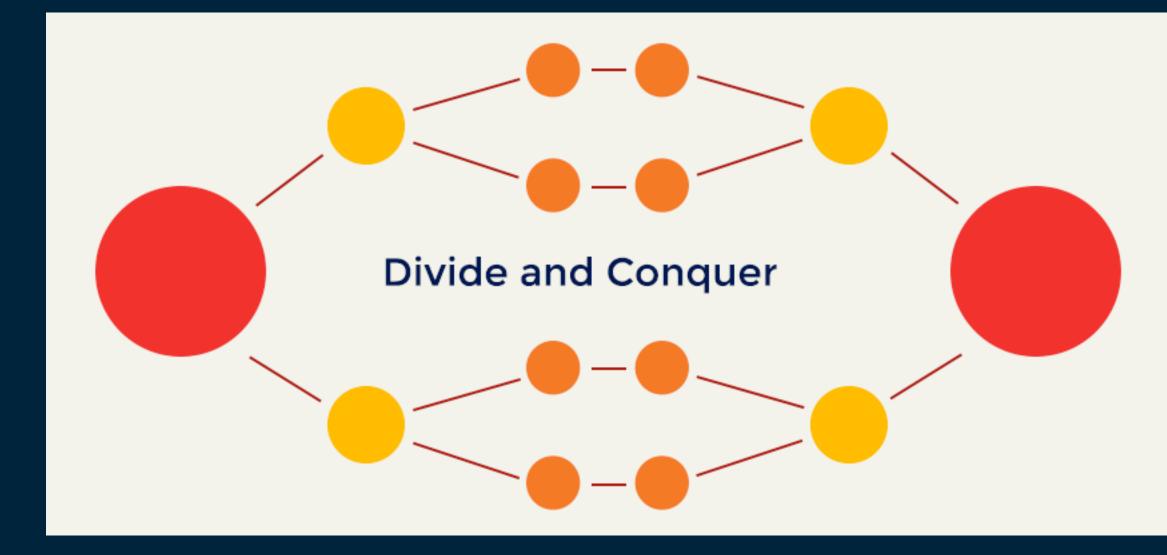
arXiv:2403.09187

Outline

- Classical dynamic programming and their role in algorithms
- The challenge of quantum recursions
- QDP as a resolution to quantum recursions
- Applications and outlook

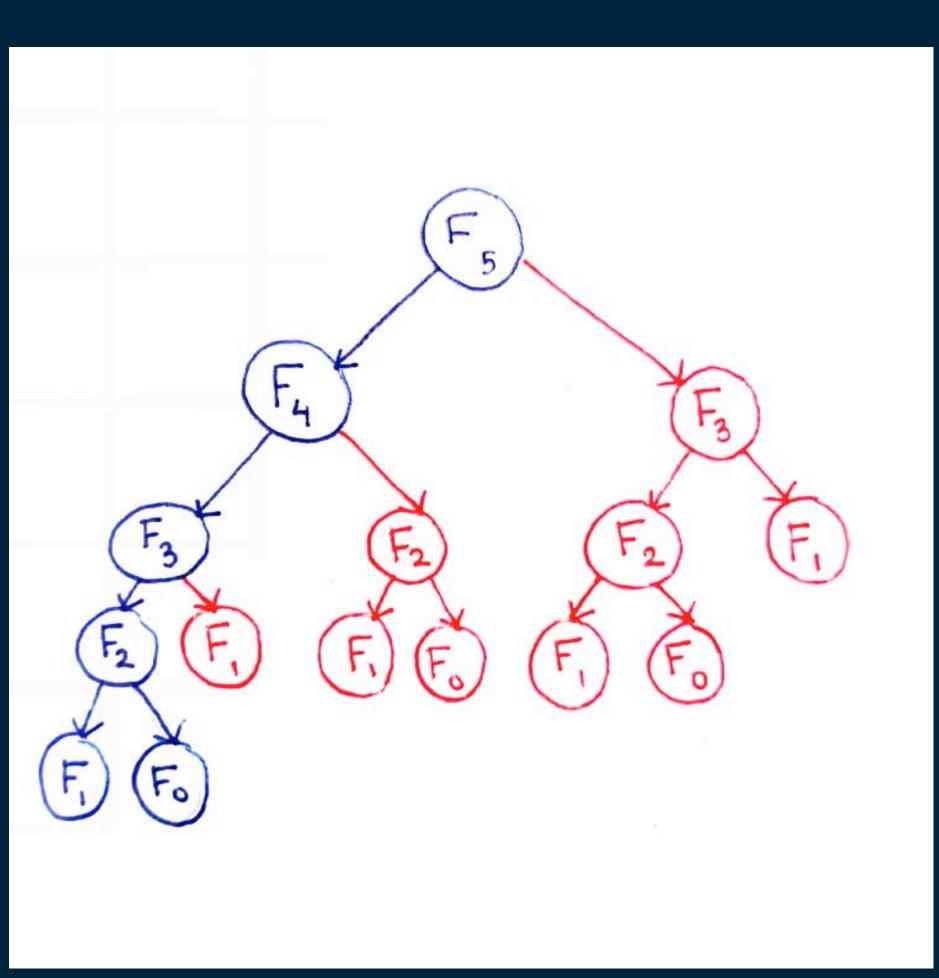
Examples of classical recursive algorithms





Classical Dynamic Programming

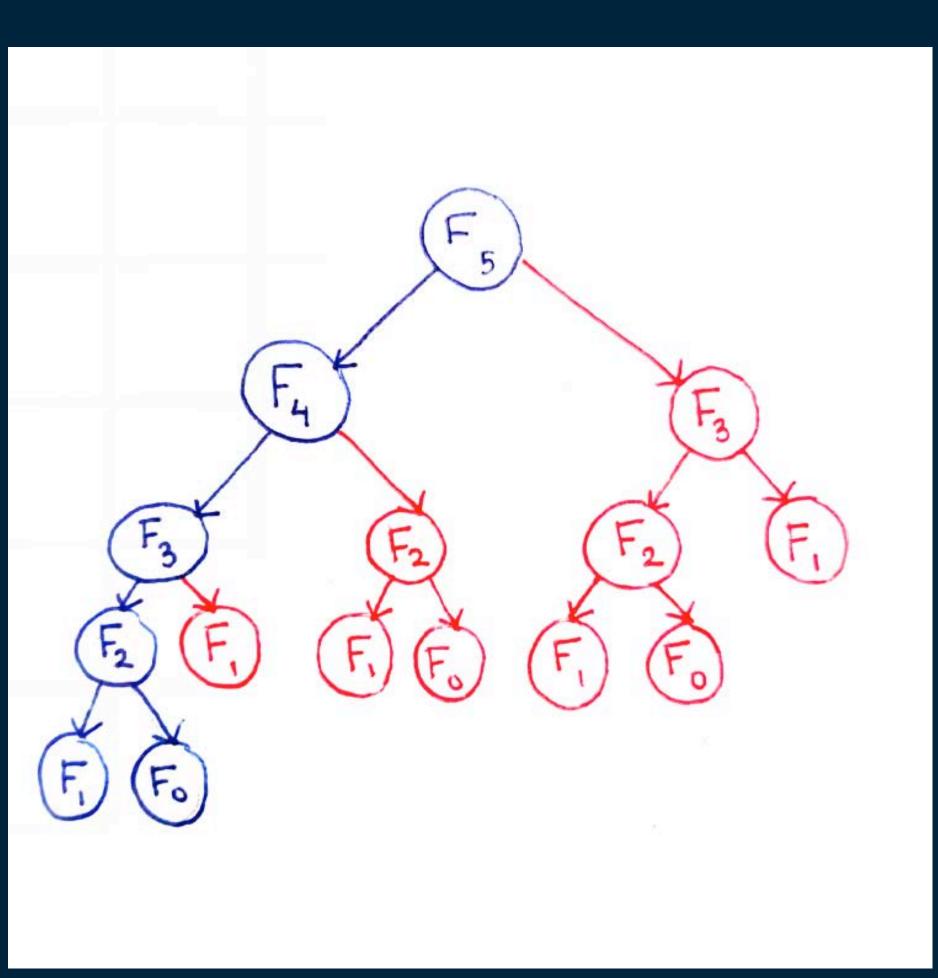
- The breaking down of a complex problem into subproblems, and storing the corresponding solutions to increase computational efficiency
- Ex: calculate F(n), the *n*-th number in the Fibonacci ulletsequence, defined as F(n) = F(n-1) + F(n-2), with F(0) = F(1) = 1
 - Naive computation (without memory) requires the computation of F(n-1) and F(n-2), every time a Fibonacci number is called (both blue and red nodes need to be computed upon use)
 - Dynamic computation (with memory) computes each F(n) only once, stores in an internal memo, and calls it the next time it is needed.



Classical Dynamic Programming

- The breaking down of a complex problem into subproblems, and storing the corresponding solutions to increase computational efficiency
- Ex: calculate F(n), the *n*-th number in the Fibonacci ulletsequence, defined as F(n) = F(n-1) + F(n-2), with F(0) = F(1) = 1
 - Naive computation (without memory) requires the F(12 1) and F(12 2) avery time of computation of Fibonacci numb Computational steps required : $O(2^n)$ need to be com
 - Dynamic computation (with memory) computes each ulletF(n) only once, Computational steps required : O(n)!the next time it is

At the cost of O(n) memory...



Quantum recursions

 $\rho_n = \hat{U}^{(\rho_{n-1})} \rho_{n-1} (\hat{U}^{(\rho_{n-1})})^{\dagger}$

Assumptions:

- The $n_{\rm th}$ recursive step $\hat{U}^{(\rho_{n-1})}$ is unitary and depends on the previous result ρ_{n-1} .
- Initial state ho_0 and $\hat{U}^{(
 ho_0)}$ are given (not necessarily known)
- \wedge \wedge • The exact form of $\hat{U}^{(\rho)}$ as a function of ρ is known

Quantum recursions

 $\rho_n = \hat{U}^{(\rho_{n-1})} \rho_{n-1} (\hat{U}^{(\rho_{n-1})})^{\dagger}$

Assumptions:

- The $n_{\rm th}$ recursive step $\hat{U}^{(\rho_{n-1})}$ is unitary and depends on the previous result ρ_{n-1} .
- Initial state ho_0 and $\hat{U}^{(
 ho_0)}$ are given (
- \wedge \wedge • The exact form of $U^{(\rho)}$ as a function

Can we even perform a quantum computation on this naively? We need $\hat{U}^{(\rho_1)}, \hat{U}^{(\rho_2)}, \dots$ all the way up to $\hat{U}^{(
ho_{n-1})}$, but we don't really know the intermediate states!

Examples of quantum recursions 1. Grover search $|\psi\rangle \mapsto e^{i\beta_L\psi}e^{i\alpha_L\tau}\cdots e^{i\beta_1\psi}e^{i\alpha_1\tau}|\psi\rangle \sim |\tau\rangle$ Nested formulation:

 $|\psi_0\rangle \mapsto |\psi_1\rangle = e^{i\beta_L^{(0)}\psi_0} e^{i\alpha_L^{(0)}\tau} \cdots e^{i\beta_1^{(0)}\psi_0} e^{i\alpha_1^{(0)}\tau} |\psi_0\rangle$ $|\psi_1\rangle \mapsto |\psi_2\rangle = e^{i\beta_L^{(1)}\psi_1} e^{i\alpha_L^{(1)}\tau} \cdots e^{i\beta_1^{(1)}\psi_1} e^{i\alpha_1^{(1)}\tau} |\psi_1\rangle$ ••• $\left| \tau \right\rangle$ with equivalent circuit depth as above, if the recursion is done via unfolding

Yoder, Low, and Chuang, PRL **113**, 210501 (2014)

Examples of quantum recursions

2. Double braket iterations, inspired by Wegner flows General technique to iteratively diagonalize an unknown state ρ in the energy eigenbasis, useful in eigenstate preparation tasks

$$\rho_0 - D, \rho_0 \rho_1 D, \rho_1 \rho_2 D, \rho_2 - (...) - D, \rho_{N-1}$$

 ρ_{∞} converges to a diagonal state for small s

Gluza, Quantum 8, 1316 (2024)

: unitary channel induced by $e^{s[\hat{D},\rho_i]}$ for some diagonal matrix D, can be done via unfolding

Quantum recursions

 $\rho_n = \hat{U}^{(\rho_{n-1})} \rho_{n-1} (\hat{U}^{(\rho_{n-1})})^{\dagger}$

Assumptions:

- The $n_{\rm th}$ recursive step $\hat{U}^{(\rho_{n-1})}$ is unitary and depends on the previous result ρ_{n-1} .
- Initial state ho_0 and $\hat{U}^{(
 ho_0)}$ are given (not necessarily known)
- \wedge \wedge • The exact form of $\hat{U}^{(\rho)}$ as a function of ρ is known

Quantum recursions

 $\rho_n = \hat{U}^{(\rho_{n-1})} \rho_{n-1} (\hat{U}^{(\rho_{n-1})})^{\dagger}$

Assumptions:

- The $n_{\rm th}$ recursive step $\hat{U}^{(
 ho_{n-1})}$ is un result ρ_{n-1} .
- Initial state ho_0 and $\hat{U}^{(
 ho_0)}$ are given
- \wedge \wedge • The exact form of $\hat{U}^{(\rho)}$ as a function

What is this unfolding business?

Can we even perform a quantum computation on this naively? We need $\hat{U}^{(\rho_1)}, \hat{U}^{(\rho_2)}, \dots$ all the way up to $\hat{U}^{(
ho_{n-1})}$, but we don't really know the intermediate states!

Implementing the next recursion step

This is indeed possible sometimes. Let's look at the particular example when

$$\hat{U}^{(\rho)} = e^{is\rho}$$
 Remember: would be added a constraint of the second state of t

Observe that since we do know ρ_0 , and furthermore $\rho_1 = \hat{U}^{(\rho_0)} \rho_0 \; (\hat{U}^{(\rho_0)})^{\dagger}$, we also have that $e^{is\rho_1} = \hat{U}^{(\rho_0)}e^{is\rho_0}(\hat{U}^{(\rho_0)})^{\dagger}$, and $\hat{U}(\rho_1)$ is possible to implement without knowing ho_1 — we just need to call the unitary $\hat{U}^{(
ho_0)}$ and its inverse. This example is trivial on its own.... • However, $\hat{U}^{(\rho)} = V_1 \cdot e^{is\rho} \cdot V_2$ is not so trivial, and yet we still have

 $e^{is\rho_1} = \hat{U}^{(\rho_0)} \cdot e^{is\rho_0} \cdot \hat{U}^{(\rho_0)^{\dagger}}$

ve assume we are given ho_0 and $\hat{U}^{(
ho_0)}$, implement $\hat{U}^{(
ho_1)}$

Implementing the next recursion step

• For a more general unitary $\hat{U}^{(\rho)} = \hat{V}_L e^{is_L \rho} \hat{V}_{L-1} \cdots \hat{V}_1 e^{is_1 \rho} \hat{V}_0$, we still can do this: $\hat{U}^{(\rho_1)}$ is possible if we call the unitary $\hat{U}^{(\rho_0)}$ a number of 2L times.

How about $\hat{U}^{(\rho_2)}, \hat{U}^{(\rho_3)}, \dots \hat{U}^{(\rho_{n-1})}$?

- execute $\hat{U}^{(
 ho_2)}$.
- we call $\hat{U}^{(\rho_1)}$ a number of 2L times,
- each call for $\hat{U}^{(\rho_1)}$ is done by calling $\hat{U}^{(\rho_0)}$ for 2L times,
- Hence, the implementation of $\hat{U}^{(\rho_2)}$ requires $4L^2$ calls of $\hat{U}^{(\rho_0)}$. Similarly, $\hat{U}^{(
 ho_3)}$ requires $8L^3$ calls of $\hat{U}^{(
 ho_0)}$...
 - In other words, $e^{is\rho_n} = \hat{U}^{(\rho_{n-1})} \cdots \hat{U}^{(\rho_0)} e^{is\rho_0} (\hat{U}^{(\rho_0)})^{\dagger} \cdots (\hat{U}^{(\rho_{n-1})})^{\dagger}$
- $O((2L)^N)$ steps (i.e. circuit depth) is required for $\hat{U}^{(\rho_{N-1})}$

Sticking with the more general example of $\hat{U}^{(\rho)} = \hat{V}_I e^{is_L \rho} \hat{V}_{I-1} \cdots \hat{V}_1 e^{is_1 \rho} \hat{V}_0$, to

unfolding, reminiscent of classical naive methods without memory

How about $\hat{U}^{(\rho_2)}$, $\hat{U}^{(\rho_3)}$, ..., $\hat{U}^{(\rho_{n-1})}$?

- execute $\hat{U}^{(
 ho_2)}$.
- we call $\hat{U}^{(\rho_1)}$ a number of 2L times,
- each call for $\hat{U}^{(\rho_1)}$ is done by calling $\hat{U}^{(\rho_0)}$ for 2L times,
- Hence, the implementation of $\hat{U}^{(\rho_2)}$ requires $4L^2$ calls of $\hat{U}^{(\rho_0)}$. Similarly, $\hat{U}^{(
 ho_3)}$ requires $8L^3$ calls of $\hat{U}^{(
 ho_0)}$...
 - In other words, $e^{is\rho_n} = \hat{U}^{(\rho_{n-1})}$.
- $O((2L)^N)$ steps (i.e. circuit depth) is req Surely it'll be faster to compute this if

Sticking with the more general example of $\hat{U}^{(\rho)} = \hat{V}_{I} e^{is_{L}\rho} \hat{V}_{I-1} \cdots \hat{V}_{1} e^{is_{1}\rho} \hat{V}_{0}$, to

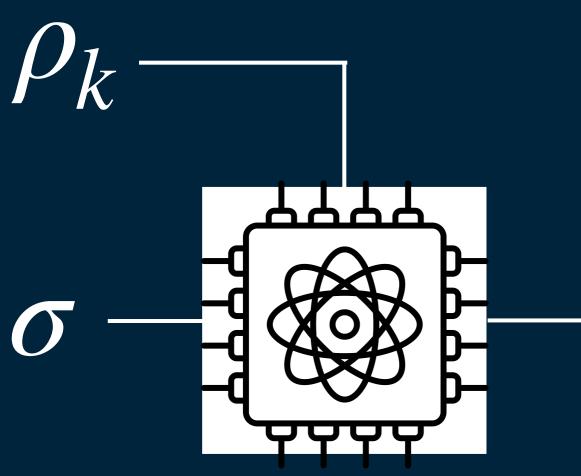
unfolding, reminiscent of classical naive methods without memory

$$\cdot \hat{U}^{(
ho_0)} e^{is
ho_0} (\hat{U}^{(
ho_0)})^{\dagger} \cdots (\hat{U}^{(
ho_{n-1})})^{\dagger}$$

we have a dynamic version of quantum computation?

Can we program quantum dynamically?

To do so, we need to consider circuits that allow us to take in **instructions** encoded in the form of quantum states ρ_k ,



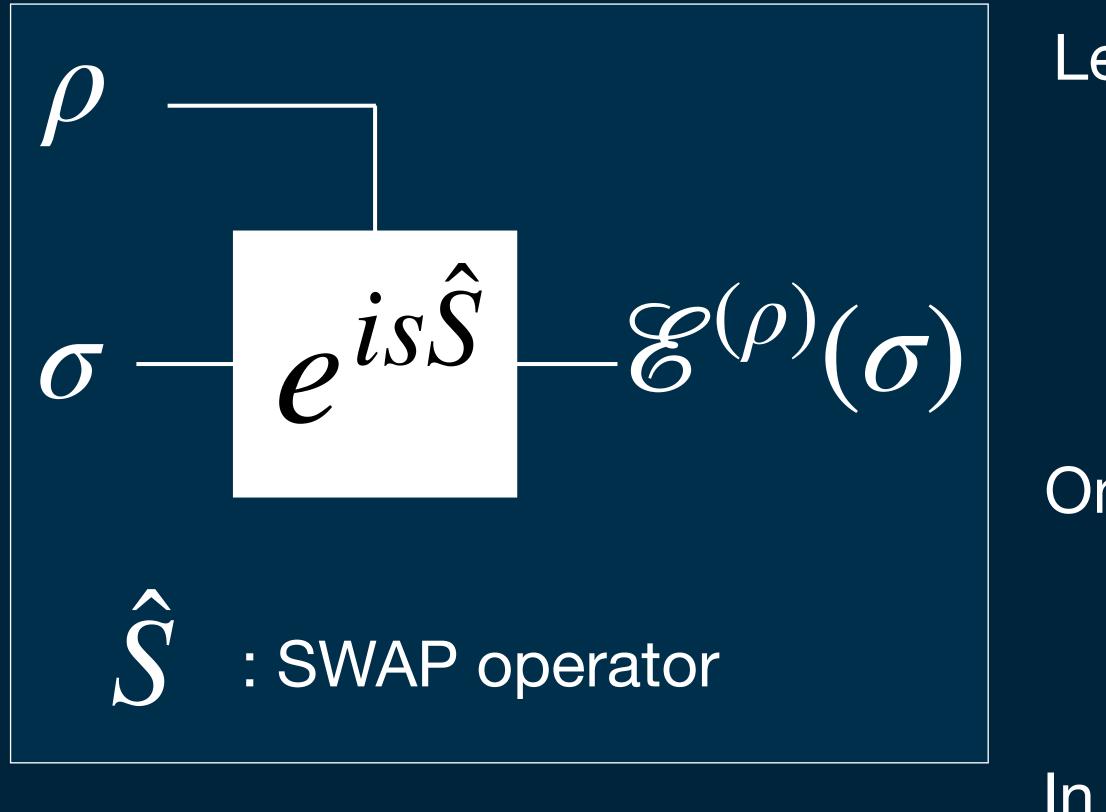
Naive method: learn ρ e.g. tomography, and then compile $\hat{U}^{(
ho)}$ via Solovay-Kitaev.

 $- \hat{U}(\rho_k) \hat{\sigma} \hat{U}(\rho_k)^{\dagger}$

Surely there are better ways to use quantummechanically encoded instructions?

Surely it'll be faster to compute this if we have a dynamic version of quantum computation?

Yes, DME is a better way! **Density Matrix Exponentiation**



Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

Suppose we want $\hat{U}^{(\rho)}\sigma\hat{U}^{(\rho)^{\dagger}}$ where $\hat{U}^{(\rho)} = e^{is\rho}$

Let A = cos(s) and B = cos(s). Then $\mathscr{E}^{(\rho)}(\sigma) = \operatorname{Tr}_{1}[e^{-is\hat{S}}(\rho \otimes \sigma)e^{is\hat{S}}]$ $= A^2 \sigma Tr[\rho] - iAB[\rho, \sigma] + O(s^2)$

On the other hand, we also know that

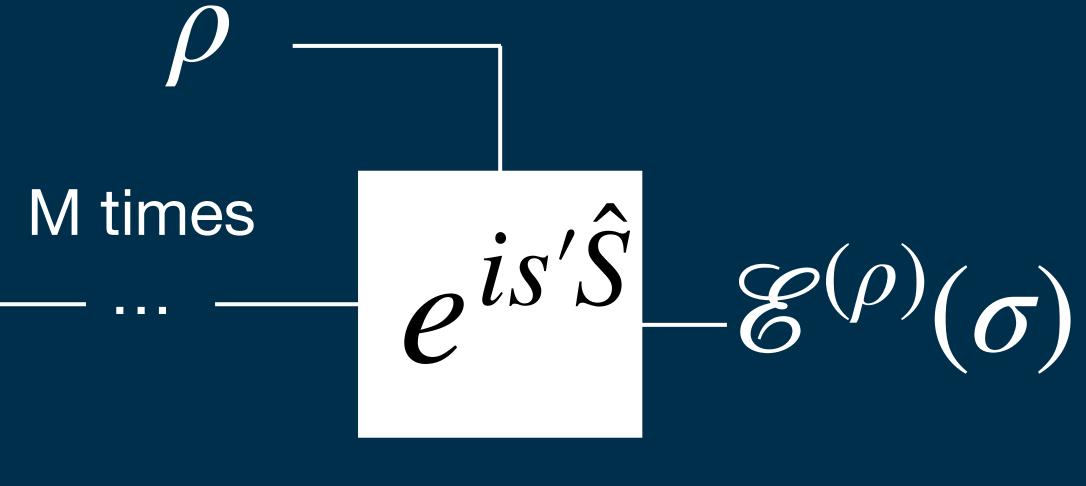
$$e^{-is\rho}\sigma e^{is\rho} = \sigma - is[\rho,\sigma] + O(s^2)$$

In other words

$$\|\mathscr{E}_{s}^{(\rho)}(\bullet) - e^{-is\rho}(\bullet)e^{is\rho}\| = O(s^{2})$$

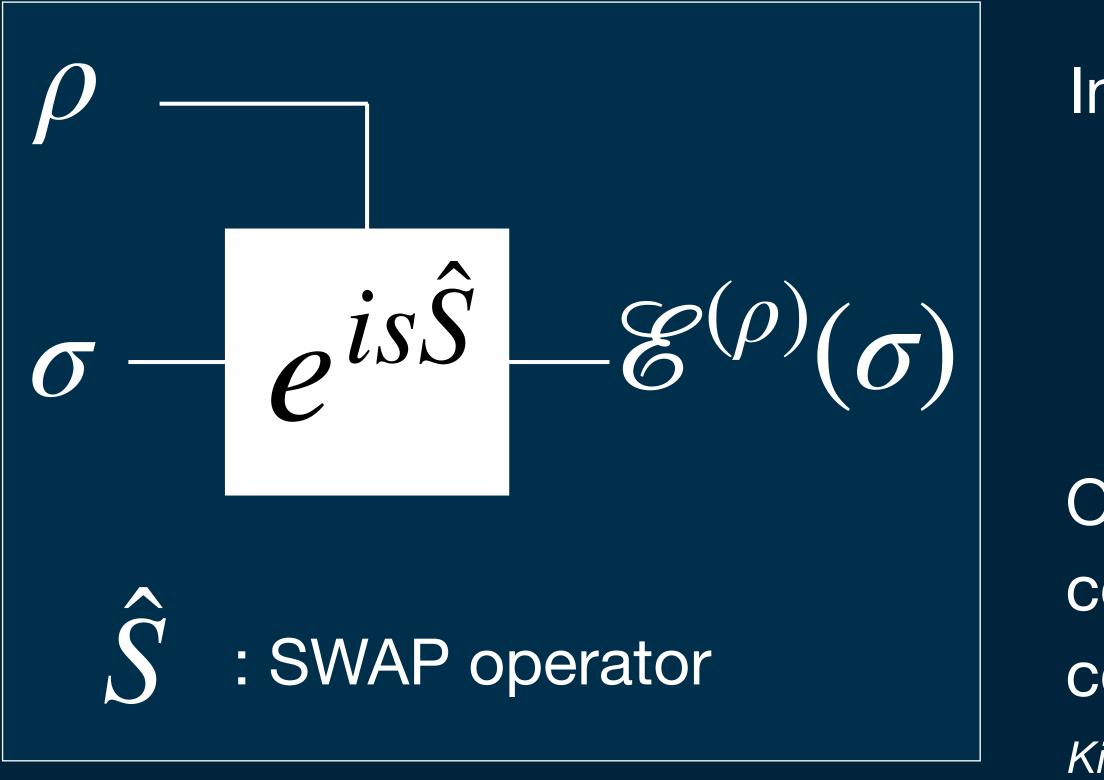
Yes, DME is a better way! To achieve a higher accuracy, one can use more copies, e.g. M copies of ρ , with smaller values of s' = s/M: M times $e^{is'\hat{S}} = \mathscr{E}^{(\rho)}(\sigma)$ $\sigma - e^{is'\hat{S}} - e^{is'\hat{S}}$ $\|\mathscr{E}^{(\rho)}_{s/M}\circ\cdots\circ\mathscr{E}^{(\rho)}_{s/M}(\bullet)-e^{-is\rho}(\bullet)$

Cost: circuit width (preparation of states is still necessary, although we bypass explicit learning)



•
$$|e^{is\rho}|| = O(s^2/M)$$
 , or $\epsilon \propto M^{-1}$

Yes, DME is a better way! **Density Matrix Exponentiation**



Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

Suppose we want $\hat{U}^{(\rho)}\sigma\hat{U}^{(\rho)^{\dagger}}$ where $\hat{U}^{(\rho)} = e^{is\rho}$

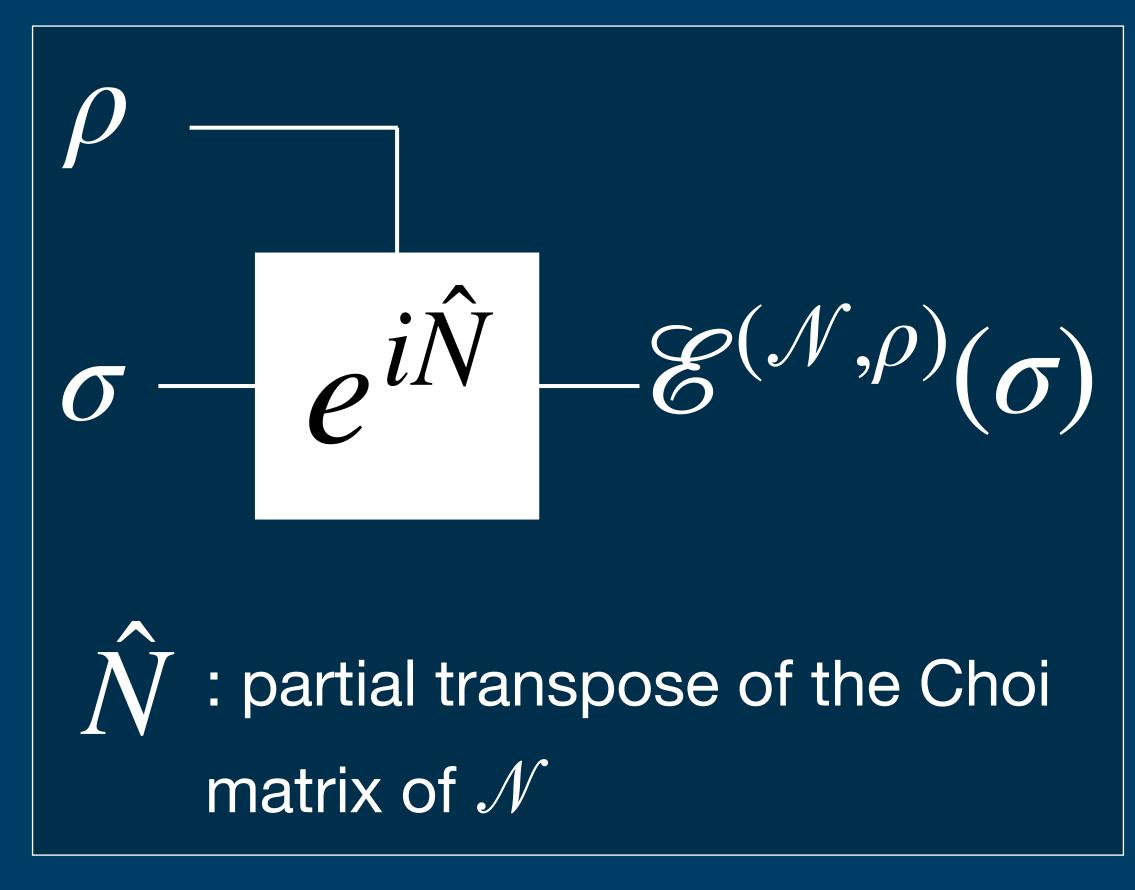
In other words,

$\left\|\mathscr{E}_{s}^{(\rho)}(\bullet)-e^{-is\rho}(\bullet)e^{is\rho}\right\|=O(s^{2})$

Optimality of DME routine shown for sample complexity in Hamiltonian simulation, in comparison to tomographic methods Kimmel et al., npj QI 3, 13 (2017)

Generalizations of DME also exist!

Hermitian-preserving Map Exponentiation



Wei. et al, arXiv:2308.07956 (2023)

Suppose we want to implement the unitary channel induced by $e^{i\mathcal{N}(\rho)}$,

Then $\mathscr{E}^{(\mathcal{N},\rho)}(\sigma)$ is a good approximation. In other words, $\|\mathscr{E}^{(\mathcal{N},\rho)}(\bullet) - e^{-i\mathcal{N}(\rho)}(\bullet)e^{i\mathcal{N}(\rho)}\| = O(\|\hat{N}\|_{\infty}^2)$

Supress errors again by using multiple copies

Let's recall our recursive problem...

- With unfolding, in order to implement the n-th recursion unitary $\hat{U}^{(
 ho_{N-1})}$ alone, $O((2L)^N)$ steps (i.e. exponential circuit depth) is required.
- With quantum instructions, if the recursion unitary has the form of

$$\hat{U}^{(\rho)} = \hat{V}_L e^{-i\mathcal{N}_L(\rho)} \hat{V}_{L-1} \cdots \hat{V}_1 e^{-i\mathcal{N}_1(\rho)} \hat{V}_0$$

 $\hat{U}^{(\rho_N)}$ requires $O(\epsilon^{-1}L)$ copies of ρ_N and circuit of depth $O(\epsilon^{-1}L)$

- where each \mathcal{N}_i are general Hermiticity-preserving maps, then implementing
- preparing multiple copies of ρ_{N-1} still required $O((2L)^{N-1})$ circuit depth, so
- the replacement of the last step only reduces the overall depth by 1/2L

Let's recall our recursive problem...

- With unfolding, in order to implement the n-th recursion unitary $\hat{U}^{(
 ho_{N-1})}$ alone, $O((2L)^N)$ steps (i.e. exponential circuit depth) is required.
- With quantum instructions, if the recursion unitary has the form of

$$\hat{U}^{(\rho)} = \hat{V}_L e^{-i\mathcal{N}_L(\rho)} \hat{V}_{L-1} \cdots \hat{V}_1 e^{-i\mathcal{N}_1(\rho)} \hat{V}_0$$

where each \mathcal{N}_i are general Hermiticity-preserving maps, then implemin $\hat{U}^{(
ho_N)}$ requires $O(\epsilon^{-1}L)$ copies of ho_N and But surely we can now apply - preparing multiple copies of $ho_{N=1}$ still re the replacement of the last step only reduces the overall depth by $1/2L^{-1}$

- this to the preparation of $\rho_{N-1}!$

Now we have a quantum version of dynamic programming, decreasing circuit depth (computational time) exponentially at the cost of width (memory)!

Not so fast! There are caveats to this...

Errors propagate

Recall that in order to drastically reduce circuit depth, we implement $\hat{U}^{(
ho_{N-1})}$ *approximately* via DME/HME. To do that, we need to prepare multiple copies of ρ_{N-1} efficiently, by implementing $\hat{U}^{(\rho_{N-2})}$ approximately, • In other words, we prepared $\tilde{\rho}_{N-1} \approx \rho_{N-1}$ in every step due to implementation error, which has the potential to accumulate! The same exponential blow-up happens when unfolding unitary operations are not perfect

Resolution to errors: 1) they don't always blow-up

Theorem (high level description)

- lefton If the recursion unitary $\hat{U}^{(
 ho)}$ fulfills a stability criteria,
- Then QDP can implement N recursions with final error ϵ and total circuit of depth $O(N^2 \epsilon^{-1})$ no exponential blowing up of errors
- If your initial state (and therefore target final state) is furthermore pure, then depth $O(Ne^{-1})$ width $e^{O(N)}e^{-N}$ suffices
- Stability criteria: given any ρ_0 , the sequence of states $\{\rho_i\}_i$ generated by the recursion $\rho_i = U_{i-1}\rho_{i-1}U_{i-1}^{\dagger}$ has a unique fixed-point τ , such that the distance of ρ_i to τ is contracting at some finite speed

Resolution to errors: 1) they don't always blow-up

Theorem (high level description)

- If the recursion unitary
- Then QDP can in pleme of depth $O(N^2 e^{-1})$ –
- If your initial state (and then depth $O(Ne^{-1})$ w

Stability criteria: given any \bigcirc $\rho_{i} = U_{i-1} \rho_{i-1} U_{i-1}^{\dagger}$ has a un contracting at some finite s

What we need:

Proof idea:

- unitary errors get suppressed by a factor r after each iteration

- For any ρ , s.t. spec(ρ) = spec(τ)
- $\|\tau \hat{U}^{(\rho)}(\rho)\| \le h(\|\tau \rho\|) < \|\tau \rho\|$ and
- $h(\delta + \epsilon) \le h(\delta) + r\epsilon$, where r < 1 for $\delta < \delta^*$, $\epsilon < \epsilon^*$

- non-unitary errors accumulate linearly, use
 - subroutines to supress them
 - Cirac, Ekert, and Macchiavello, PRL 82, 4344 (1999)

Resolution to errors: 2) QDP offers a hybrid approach

- Using unfolding only, there is a maximum achievable recursion ho_{N_1} due to depth limitations. Using QDP only, there is a maximum achievable recursion ρ_{N_2} due to width limitations
- A hybrid approach allows for:
 - Implementing N_1 iterations with unfolding $e^{O(N_2)}$ such circuits are run in parallel; depth scales as $e^{O(N_1)}$
 - N_2 iterations are subsequently implemented with QDP
 - Obtains ρ_N , with $N \approx N_1 + N_2$ recursive steps with total circuit depth: \bigcirc $\operatorname{poly}(N_2)e^{O(N_1)}$

Suppose a quantum processor with specifications of circuit depth and volume.

Take-home message

- Quantum recursions are expensive...... you pay either with circuit depth (unfolding), or width.
- QDP gives us an additional tool to make full use of a quantum processor, trading depth at the cost of width.
- Will this really be useful? I don't know, but we have plans to find out... Marek is outlining a roadmap on systematic usage of double-brackets Integrate DB & QDP onto QIBO (open source middleware for
 - - quantum computing)
 - Plans for whitepaper on DB
- Singapore has long-term ambitious plans in building quantum computers

