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Outline
• Classical dynamic programming and their role in algorithms


• The challenge of quantum recursions


• QDP as a resolution to quantum recursions


• Applications and outlook



Examples of classical recursive algorithms



Classical Dynamic Programming
• The breaking down of a complex problem into 

subproblems, and storing the corresponding solutions 
to increase computational efficiency


• Ex: calculate , the -th number in the Fibonacci 
sequence, defined as with 




• Naive computation (without memory) requires the 
computation of  and , every time a 
Fibonacci number is called (both blue and red nodes 
need to be computed upon use)


• Dynamic computation (with memory) computes each 
 only once, stores in an internal memo, and calls it 

the next time it is needed.

F(n) n
F(n) = F(n − 1) + F(n − 2),

F(0) = F(1) = 1

F(n − 1) F(n − 2)

F(n)
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Computational steps required : O(2n)

Computational steps required : ! 
At the cost of  memory…

O(n)
O(n)



Quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions: 

๏ The th recursive step  is unitary and depends on the previous 

result .

๏ Initial state  and  are given (not necessarily known)

๏ The exact form of  as a function of  is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ
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Can we even perform a quantum computation 
on this naively? We need … all the 
way up to , but we don’t really know the 

intermediate states!

Û(ρ1), Û(ρ2),
Û(ρn−1)



Examples of quantum recursions
1. Grover search |ψ⟩ ↦ eiβLψeiαLτ⋯eiβ1ψeiα1τ|ψ⟩ ∼ |τ⟩

Yoder, Low, and Chuang, PRL 113, 210501 (2014)

Nested formulation:

|ψ0⟩ ↦ |ψ1⟩ = eiβ(0)
L ψ0eiα(0)

L τ⋯eiβ(0)
1 ψ0eiα(0)

1 τ|ψ0⟩

|ψ1⟩ ↦ |ψ2⟩ = eiβ(1)
L ψ1eiα(1)

L τ⋯eiβ(1)
1 ψ1eiα(1)

1 τ|ψ1⟩

⋯ |τ⟩with equivalent circuit depth as above, 
if the recursion is done via unfolding



Examples of quantum recursions

Gluza, Quantum 8, 1316 (2024)

2. Double braket iterations, inspired by Wegner flows
General technique to iteratively diagonalize an unknown state  in the 
energy eigenbasis, useful in eigenstate preparation tasks

ρ

: unitary channel induced by  for some diagonal matrix 
, can be done via unfolding

es[D̂,ρi]

DD, ρi

ρ0 D, ρ0 ρ1 D, ρ1 ρ2
(…)D, ρ2 D, ρN−1

 converges to a diagonal state for small ρ∞ s



Quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†
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Quantum recursions
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Assumptions: 
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Can we even perform a quantum computation 
on this naively? We need … all the 
way up to , but we don’t really know the 

intermediate states!

Û(ρ1), Û(ρ2),
Û(ρn−1)

What is this unfolding business?



Implementing the next recursion step
This is indeed possible sometimes. Let’s look at the particular example when 

Û(ρ) = eisρ

๏ Observe that since we do know , and furthermore , we 

also have that , and  is possible to implement 

without knowing  — we just need to call the unitary  and its inverse.

๏ This example is trivial on its own….

๏ However,  is not so trivial, and yet we still have 

.

ρ0 ρ1 = Û(ρ0) ρ0 (Û(ρ0))†

eisρ1 = Û(ρ0)eisρ0(Û(ρ0))† Û(ρ1)
ρ1 Û(ρ0)

Û(ρ) = V1 ⋅ eisρ ⋅ V2

eisρ1 = Û(ρ0) ⋅ eisρ0 ⋅ Û(ρ0)†

Remember: we assume we are given  and , 
our goal is to implement 

ρ0 Û(ρ0)

Û(ρ1)



Implementing the next recursion step

๏ For a more general unitary , we still can do 
this:  is possible if we call the unitary  a number of  times.

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ1) Û(ρ0) 2L



How about … ?Û(ρ2), Û(ρ3), Û(ρn−1)

Sticking with the more general example of , to 
execute , 

๏ we call  a number of  times,

๏ each call for  is done by calling  for  times,

๏ Hence, the implementation of  requires  calls of . Similarly, 

 requires  calls of …

๏ In other words, 


๏  steps (i.e. circuit depth) is required for 

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ2)

Û(ρ1) 2L
Û(ρ1) Û(ρ0) 2L

Û(ρ2) 4L2 Û(ρ0)

Û(ρ3) 8L3 Û(ρ0)

eisρn = Û(ρn−1)⋯Û(ρ0)eisρ0(Û(ρ0))†⋯(Û(ρn−1))†

O((2L)N) Û(ρN−1)

unfolding, reminiscent of classical 
naive methods without memory
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Can we program quantum dynamically?

To do so, we need to consider circuits that allow us to take in instructions 
encoded in the form of quantum states ,ρk

Û(ρk)σÛ(ρk)†

Naive method: learn  e.g. 
tomography, and then compile  
via Solovay-Kitaev. 

ρ
Û(ρ)

ρk

σ

Surely it’ll be faster to compute this if 
we have a dynamic version of  

quantum computation?

Surely there are better 
ways to use quantum-

mechanically 
encoded instructions?



Yes, DME is a better way!

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

ℰ(ρ)(σ) = Tr1[e−is ̂S(ρ ⊗ σ)eis ̂S]
= 𝖠2σTr[ρ] − i𝖠𝖡[ρ, σ] + O(s2)

Let  and . Then𝖠 = cos(s) 𝖡 = cos(s)

On the other hand, we also know that

e−isρσeisρ = σ − is[ρ, σ] + O(s2)

ρ

σ eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

Density Matrix Exponentiation

Suppose we want  
where 

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ

In other words, 
∥ℰ(ρ)

s ( ∙ ) − e−isρ( ∙ )eisρ∥ = O(s2)



Yes, DME is a better way!

σ

ρ

eis′ 
̂S ℰ(ρ)(σ)

ρ

eis′ 
̂S

ρ

eis′ 
̂S…

M times

To achieve a higher accuracy, one can use more copies, e.g.  copies of , with 
smaller values of :

M ρ
s′ = s/M

∥ℰ(ρ)
s/M ∘ ⋯ ∘ ℰ(ρ)

s/M( ∙ ) − e−isρ( ∙ )eisρ∥ = O(s2/M)

Cost: circuit width (preparation of states is still necessary, although we bypass explicit learning)

ϵ ∝ M−1, or



ρ

σ

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

In other words, 

∥ℰ(ρ)
s ( ∙ ) − e−isρ( ∙ )eisρ∥ = O(s2)

Yes, DME is a better way!
Density Matrix Exponentiation

Suppose we want  
where 

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ

Optimality of DME routine shown for sample 
complexity in Hamiltonian simulation, in 
comparison to tomographic methods
Kimmel et al., npj QI 3, 13 (2017)



Wei. et al, arXiv:2308.07956 (2023)

Suppose we want to implement the 
unitary channel induced by , ei𝒩(ρ)

Generalizations of DME also exist!

ρ

σ eiN̂

N̂ : partial transpose of the Choi 
matrix of 𝒩

ℰ(𝒩,ρ)(σ)

Hermitian-preserving Map Exponentiation

Supress errors again by using multiple copies

∥ℰ(𝒩,ρ)( ∙ ) − e−i𝒩(ρ)( ∙ )ei𝒩(ρ)∥ = O(∥N̂∥2
∞)

In other words,
Then  is a good approximation.ℰ(𝒩,ρ)(σ)



Let’s recall our recursive problem…
๏ With unfolding, in order to implement the n-th recursion unitary  alone, 

 steps (i.e. exponential circuit depth) is required.

๏ With quantum instructions, if the recursion unitary has the form of


where each  are general Hermiticity-preserving maps, then implementing 
 requires  copies of  and circuit of depth 


- preparing multiple copies of  still required  circuit depth, so 

the replacement of the last step only reduces the overall depth by 

Û(ρN−1)

O((2L)N)

𝒩i

Û(ρN) O(ϵ−1L) ρN O(ϵ−1L)
ρN−1 O((2L)N−1)

1/2L

Û(ρ) = ̂VLe−i𝒩L(ρ) ̂VL−1⋯ ̂V1e−i𝒩1(ρ) ̂V0
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Û(ρ) = ̂VLe−i𝒩L(ρ) ̂VL−1⋯ ̂V1e−i𝒩1(ρ) ̂V0

But surely we can now apply 
this to the preparation of !ρN−1



Now we have a quantum version 
of dynamic programming, 
decreasing circuit depth 

(computational time) 
exponentially at the cost of 

width (memory)! Not so fast!  
There are caveats to this…



Errors propagate
๏ Recall that in order to drastically reduce circuit depth, we implement  

approximately via DME/HME. To do that, we need to prepare multiple copies 
of  efficiently, by implementing  approximately, …… 


๏ In other words, we prepared  in every step due to implementation 

error, which has the potential to accumulate!

๏ The same exponential blow-up happens when unfolding unitary operations 

are not perfect

Û(ρN−1)

ρN−1 Û(ρN−2)

ρ̃N−1 ≈ ρN−1

Oh no! What can we do about this?



Resolution to errors: 1) they don’t always blow-up

Theorem (high level description)


๏ If the recursion unitary  fulfills a stability criteria,


๏ Then QDP can implement  recursions with final error  and total circuit 
of depth  — no exponential blowing up of errors


๏ If your initial state (and therefore target final state) is furthermore pure, 
then depth  width  suffices

Û(ρ)

N ϵ
O(N2ϵ−1)

O(Nϵ−1) eO(N)ϵ−N

๏ Stability criteria: given any , the sequence of states  generated by the recursion 
 has a unique fixed-point , such that the distance of  to  is 

contracting at some finite speed

ρ0 {ρi}i
ρi = Ui−1ρi−1U†

i−1 τ ρi τ
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๏ Stability criteria: given any , the sequence of states  generated by the recursion 
 has a unique fixed-point , such that the distance of  to  is 

contracting at some finite speed

ρ0 {ρi}i
ρi = Ui−1ρi−1U†

i−1 τ ρi τ

What we need: 
For any , s.t.  

 and 
, where  for  

Proof idea:  
•  unitary errors get suppressed by a factor  after 

each iteration 
• non-unitary errors accumulate linearly, use 

subroutines to supress them

ρ spec(ρ) = spec(τ)
∥τ − Û(ρ)(ρ)∥ ≤ h(∥τ − ρ∥) < ∥τ − ρ∥
h(δ + ϵ) ≤ h(δ) + rϵ r < 1 δ < δ⋆, ϵ < ϵ⋆

r

Cirac, Ekert, and Macchiavello, PRL 82, 4344 (1999)



Resolution to errors: 2) QDP offers a hybrid approach

Suppose a quantum processor with specifications of circuit depth and volume.


๏ Using unfolding only, there is a maximum achievable recursion  due to 
depth limitations. Using QDP only, there is a maximum achievable recursion 

 due to width limitations


๏ A hybrid approach allows for:


๏ Implementing  iterations with unfolding —  such circuits are run in 
parallel; depth scales as 


๏  iterations are subsequently implemented with QDP


๏ Obtains , with  recursive steps with total circuit depth: 

ρN1

ρN2

N1 eO(N2)

eO(N1)

N2

ρN N ≈ N1 + N2
poly(N2)eO(N1)



Take-home message
๏ Quantum recursions are expensive…… you pay either with circuit depth 

(unfolding), or width. 

๏ QDP gives us an additional tool to make full use of a quantum processor, 

trading depth at the cost of width.

๏ Will this really be useful? I don’t know, but we have plans to find out…


๏ Marek is outlining a roadmap on systematic usage of double-brackets

๏ Integrate DB & QDP onto QIBO (open source middleware for 

quantum computing)

๏ Plans for whitepaper on DB 


๏ Singapore has long-term ambitious plans in building quantum computers


