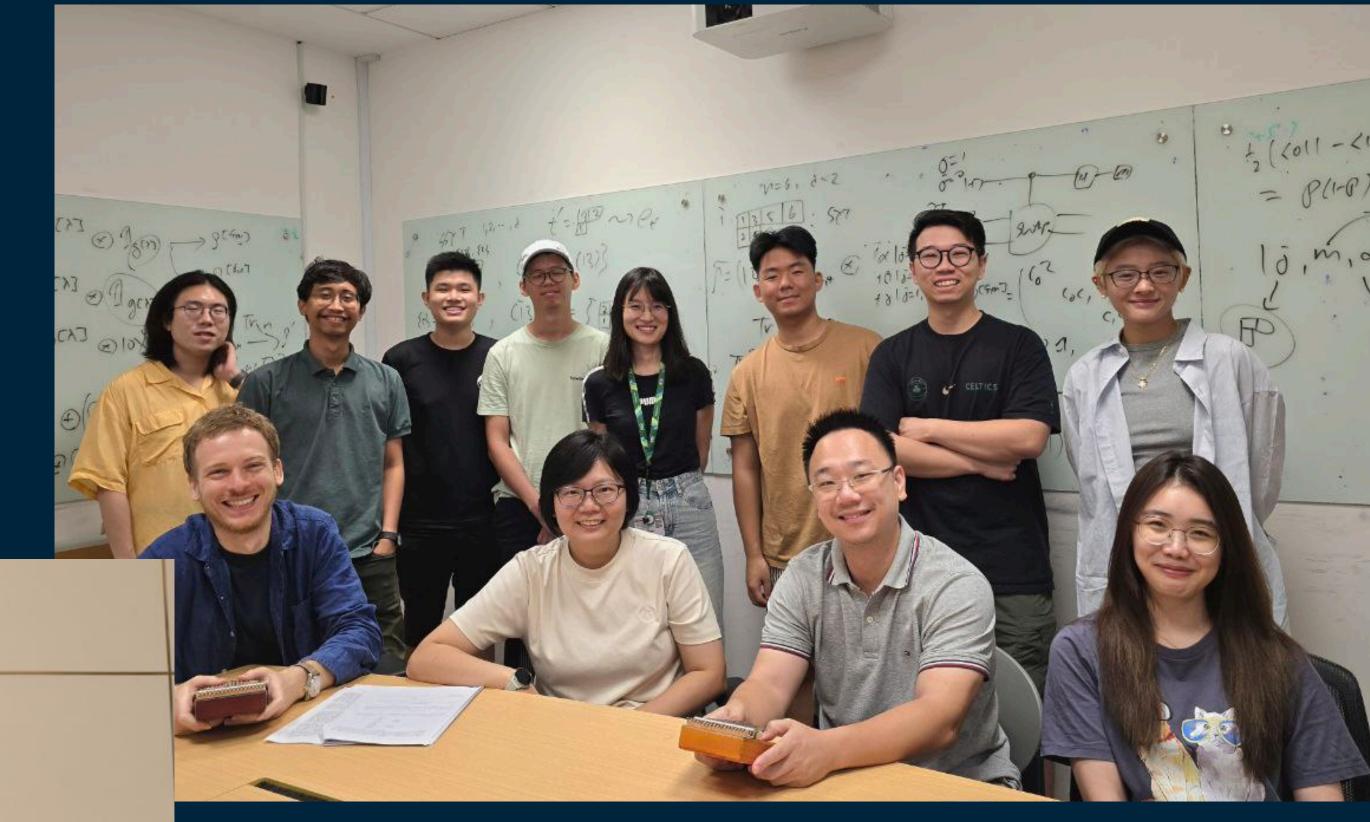
Double-bracket quantum algorithms

Nelly Ng Nanyang Technological University Singapore



Quantum resource theories

Quantum algorithms

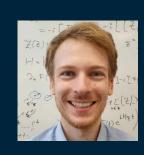
im.Q

Quantum field simulators

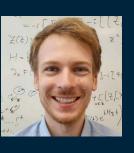
Quantum communications

An ongoing journey...

Double-bracket quantum algorithms for diagonalization Quantum 8, 1316 (2024)



Quantum Dynamic Programming Phys. Rev. Lett. 134, 180602 (2025)

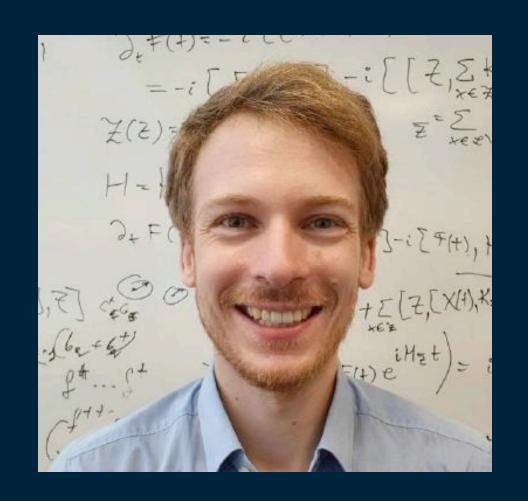


Double-bracket quantum algorithms for quantum imaginary-time evolution arXiv:2412.04554

Double-bracket algorithm for quantum signal processing without post-selection arXiv:2504.01077

Grover's algorithm is an approximation of imaginary-time evolution arXiv:2507.15065

Yours truly:)



Marek Gluza

Jeongrak Son

Tiang Bi Hong

NTU Singapore

Yudai Suzuki

Zoe Holmes

René Zander

Raphael Seidel

EPFL, Switzerland

Fraunhofer, Germany

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

The story starts with double-bracket flows by Brockett 1991

$$\dot{N}(t) = [N(t), [N(t), H]]$$

A rate equation for the matrix N(t), which is determined by a "double bracket (commutator)".

H, N are symmetric, real $n \times n$ matrices

Our main result is that given appropriate choices for H(0) and N the equation $\dot{H}=[H,[H,N]]$ can be used to solve certain standard problems in applied mathematics. From a mathematical point of view, this equation is a way of studying the gradient (steepest descent or steepest ascent) equation associated with functions of the form $\operatorname{tr}(Q\Theta N\Theta^T)$, viewed as functions of Θ with Θ belonging to the orthogonal group. This

The flow equation is derived assuming that dynamics on N(t) trace out a steepest descent that optimizes $\mathrm{tr}(HN(t))$, where $N(t) = O(t)N(0)O^T(t)$, O(t) being a continuously parametrized orthogonal matrix

Dynamical Systems That Sort Lists, Diagonalize Matrices, and Solve Linear Programming Problems*

R. W. Brockett

Division of Applied Sciences

Harvard University

Cambridge, Massachusetts 02138

The story starts with double-bracket flows by Brockett 1991

$$\dot{N}(t) = [N(t), [N(t), H]]$$

A rate equation for the matrix N(t), which is determined by a "double bracket (commutator)".

H, N are symmetric, real $n \times n$ matrices

Observation by Brockett: if H is diagonal and non-degenerate, and N(0) is symmetric, then

$$N(\infty) := \lim_{t \to \infty} N(t)$$

exists and is a diagonal matrix

Dynamical Systems That Sort Lists, Diagonalize Matrices, and Solve Linear Programming Problems*

R. W. Brockett

Division of Applied Sciences

Harvard University

Cambridge, Massachusetts 02138

The story starts with Brockett 1991

$$\dot{N}(t) = [N(t), [N(t), H]]$$

A rate equation for the matrix N(t), which is determined by a "double bracket (commutator)"

H, N are symmetric, real $n \times n$ matrices

Proof sketch (generalization for non-degenerate H and complex matrices also possible):

1) consider
$$\frac{d}{dt} \operatorname{tr}(HN) = \operatorname{tr} N[H, [H, N]] = -\operatorname{tr}(HN - NH)^2$$

1) consider $\frac{d}{dt} \operatorname{tr}(HN) = \operatorname{tr} N[H, [H, N]] = -\operatorname{tr}(HN - NH)^2$ 2) note that commutators are antisymmetric, so $\frac{d}{dt} \operatorname{tr}(HN) = \operatorname{tr}(HN - NH)(HN - NH)^T$,

meaning that tr(HN) is monotonically increasing, and upper bounded, i.e. its derivative goes to 0. This can happen only if N, H commute. Given that we assume H nondegenerate, this means N becomes diagonal.

Implication of Brockett's formula for quantum many-body systems

evolving in Euclidean n-space. Although from our point of view it looks accidental, the equations turn out to have properties in common with equations which have appeared in the theory of completely integrable Hamiltonian systems. In particular, although they are not the same, the equations are similar to the matrix version of the (finite) Toda lattice problem when studied from the "Lax pair" point of view. (See, for example, the work of Deift et al. [4] or the recent survey [6].)

Głazek, Wilson, and Wegner, 1993-1994: applied flow equations for Hamiltonians of many-body systems

Flow-equations for Hamiltonians

Franz Wegner

Institut für Theoretische Physik, Ruprecht-Karls-Universität, D-69120 Heidelberg, Germany

1 Introduction

In order to solve a many-particle problem one would like to diagonalize the Hamiltonian and to calculate from the eigenstates and their energies the observables of interest. However, apart from a few explicitly solvable models this is not possible. Therefore one may try — and this will be done here — to transform the Hamiltonian in such a way that it becomes more and more diagonal. More precisely unitary transformations will be applied to the Hamiltonian so that the off-diagonal matrix elements become smaller and smaller.

As we will see in evaluate everyles there will be difficulties to reach the goal of

Communications and Control Engineering

Series Editor: Alberto Isidori · Jan H. van Schuppen Eduardo D. Sontag · Manfred Thoma · Miroslav Krstic

Uwe Helmke · John B. Moore R. Brockett *Editors*

Optimization and Dynamical Systems

Systematic exposition of technical tools surrounding Brockett's flow equation

A double-braket flow for quantum states

$$\frac{\partial \rho(t)}{\partial t} = [\rho(t), [\rho(t), -\hat{H}]]$$

Where \hat{H} is the Hamiltonian of the system

Brockett, Glazek, Wilson and Wegner's results collectively tell us that as t increases, $\rho(t)$ becomes increasingly diagonal in the basis of \hat{H} ; and eventually "equilibrates" to a steady, energy-incoherent state

Double-bracket flow vs the von Neumann equation

$$\frac{\partial \rho(t)}{\partial t} = -\left[\rho(t), \left[\rho(t), \hat{H}\right]\right]$$

Non-linear

How can we implement this?

$$\frac{\partial \rho(t)}{\partial t} = i[\rho(t), \hat{H}]$$

Linear

Natural time-evolution

$$\rho(t) = e^{-i\hat{H}t}\rho(0)e^{i\hat{H}t}$$

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

A recipe to approximately implement DBF

$$\frac{\partial \rho(t)}{\partial t} = -\left[\rho(t), \left[\rho(t), \hat{H}\right]\right]$$

M. Gluza, Quantum 8, 1316 (2024)

1) Assume first that $\rho(t) = |\Psi(t)\rangle\langle\Psi(t)|$ is pure. Note that we can then rewrite the double-bracket equation into its action on the pure state,

$$\partial_t | \Psi(t) \rangle = [\rho(t), \hat{H}] | \Psi(t) \rangle$$

2) For short times Δt , we have that

$$|\Psi(\Delta t)\rangle \approx \frac{e^{\Delta t[\rho(0),\hat{H}]}|\Psi(0)\rangle$$

Unitary, since $[\rho(0),\hat{H}]$ is anti-Hermitian

A recipe to approximately implement DBF $\frac{\partial \rho(t)}{\partial t} = -\left[\rho(t), \left[\rho(t), \hat{H}\right]\right]$

M. Gluza, Quantum 8, 1316 (2024)

3) Recall product formulas for small s,

$$e^{s[A,B]} \approx e^{i\sqrt{s}B} e^{i\sqrt{s}A} e^{-i\sqrt{s}B} e^{-i\sqrt{s}A} + \mathcal{O}(s^{3/2})$$

4) Note that the above, applied to our exponential map $e^{\Delta t[\rho,\hat{H}]}$ gives

Backward and forward usual time evolution

$$e^{\Delta t[\rho(0),\hat{H}]} \approx e^{i\sqrt{\Delta t}\hat{H}} \left[e^{i\sqrt{\Delta t}\rho(0)} e^{-i\sqrt{\Delta t}\hat{H}} \left[e^{-i\sqrt{\Delta t}\rho(0)} + \mathcal{O}(\Delta t^{3/2}) \right] \right]$$

"Reflection operators around $\rho(0)$ "

A recipe to approximately implement DBF $\frac{\partial \rho(t)}{\partial t} = -\left[\rho(t), \left[\rho(t), \hat{H}\right]\right]$

M. Gluza, Quantum 8, 1316 (2024)

5) In the next time step, the map needs to be updated to $e^{\Delta t[\rho(\Delta t),\hat{H}]}$! Generally, this gives us a recursive formula

$$|\Psi(t)\rangle$$
 — $R_{\rho(t)}(-\sqrt{\Delta t}) - R_H(-\sqrt{\Delta t}) - R_{\rho(t)}(\sqrt{\Delta t}) - R_H(\sqrt{\Delta t})$ — $\approx |\Psi(t + \Delta t)\rangle$

* freedom to choose time step size in every iteration

In fact, the first reflector is unnecessary:

$$|\Psi(t)\rangle - R_H(-\sqrt{\Delta t}) - R_{\rho(t)}(\sqrt{\Delta t}) - R_H(\sqrt{\Delta t}) - \approx |\Psi(t + \Delta t)\rangle$$

Double-bracket algorithms are an example of quantum recursions

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

$$\rho_n = \hat{U}^{(\rho_{n-1})} \rho_{n-1} (\hat{U}^{(\rho_{n-1})})^{\dagger}$$

Assumptions:

- ullet The $n_{
 m th}$ recursive step $\hat{U}^{(
 ho_{n-1})}$ is a **unitary** and depends on the **previous** result ho_{n-1} .
- ullet Initial state ho_0 and $\hat{U}^{(
 ho_0)}$ are known and given
- ullet The exact form of $\hat{U}^{(
 ho)}$ as a function of ho is known

Naive implementation (unfolding) leads to exponential circuit depth

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Let's look at the reflection $\hat{U}^{(\rho)}=e^{is\rho}$

Remember: we assume we are given ho_0 and $\hat{U}^{(
ho_0)}$, our goal is to implement $\hat{U}^{(
ho_1)}$

- Observe that since we do know ho_0 , and furthermore $ho_1=\hat U^{(
 ho_0)}$ ho_0 $(\hat U^{(
 ho_0)})^\dagger$, we also have that $e^{is
 ho_1}=\hat U^{(
 ho_0)}e^{is
 ho_0}(\hat U^{(
 ho_0)})^\dagger$, and $\hat U(
 ho_1)$ is possible to implement without knowing ho_1 we just need to call the unitary $\hat U^{(
 ho_0)}$ and its inverse.
- This example is trivial on its own....
- ullet However, $\hat{U}^{(
 ho)}=V_1\cdot e^{is
 ho}\cdot V_2$ is not so trivial, and yet we still have $\hat{U}^{(
 ho_1)}=\hat{U}^{(
 ho_0)}\cdot e^{is
 ho_0}\cdot \hat{U}^{(
 ho_0)^\dagger}.$
- ullet For a more general unitary $\hat{U}^{(
 ho)}=\hat{V}_Le^{is_L
 ho}\hat{V}_{L-1}\cdots\hat{V}_1e^{is_1
 ho}\hat{V}_0$, we still can do this: $\hat{U}^{(
 ho_1)}=\hat{U}^{(
 ho_2)}=\hat{U}^{(
 ho_3)}=\hat{U}^{(
 ho_4)}$ is possible if we call the unitary $\hat{U}^{(
 ho_3)}=\hat{U}^{(
 ho_4)}=\hat{U}^{(
 ho_5)}=\hat{U}^{(
 ho_5)}=\hat{U}^{$

Naive implementation (unfolding) leads to exponential circuit depth

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Sticking with the more general example of $\hat{U}^{(\rho)}=\hat{V}_Le^{is_L\rho}\hat{V}_{L-1}\cdots\hat{V}_1e^{is_1\rho}\hat{V}_0$, to execute $\hat{U}^{(\rho_2)}$,

- ullet we call $\hat{U}^{(
 ho_1)}$ a number of 2L times,
- ullet each call for $\hat{U}^{(
 ho_1)}$ is done by calling $\hat{U}^{(
 ho_0)}$ for 2L times,
- ullet Hence, the implementation of $\hat{U}^{(
 ho_2)}$ requires $4L^2$ calls of $\hat{U}^{(
 ho_0)}$. Similarly, $\hat{U}^{(
 ho_3)}$ requires $8L^3$ calls of $\hat{U}^{(
 ho_0)}$...
 - ullet In other words, $e^{is
 ho_n}=\hat{U}^{(
 ho_{n-1})}\cdots\hat{U}^{(
 ho_0)}e^{is
 ho_0}(\hat{U}^{(
 ho_0)})^\dagger\cdots(\hat{U}^{(
 ho_{n-1})})^\dagger$
- ullet $O((2L)^N)$ steps (i.e. circuit depth) is required for $\hat{U}^{(
 ho_{N-1})}$

unfolding, reminiscent of

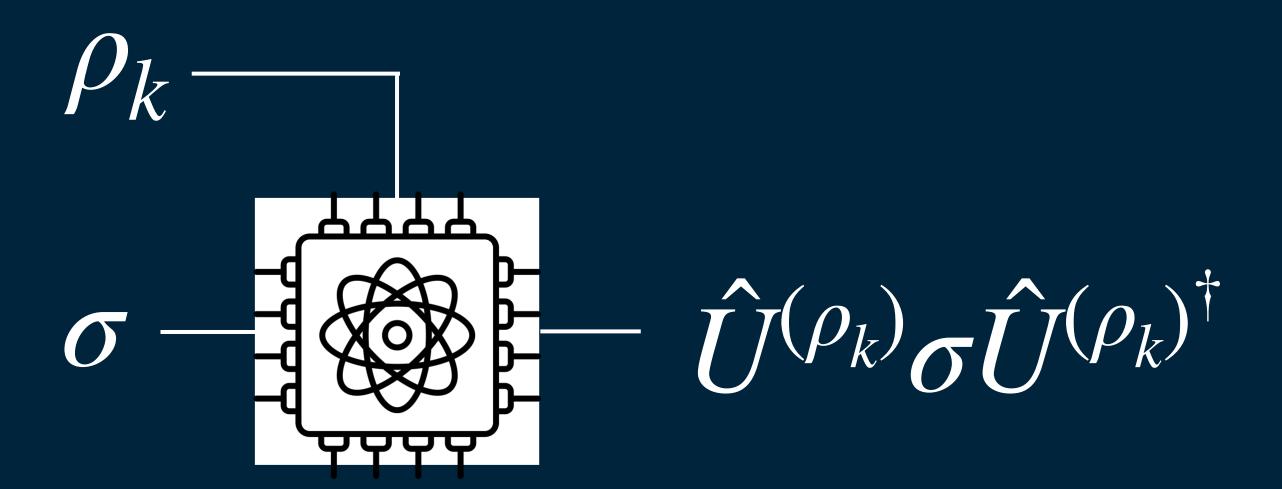
classical naive methods

without memory

Building a dynamic implementation via quantum instructions

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

To do so, we need to consider circuits that allow us to take in **instructions** encoded in the form of quantum states ρ_k ,



Density Matrix Exponentiation

Suppose we want $\hat{U}^{(\rho)}\sigma\hat{U}^{(\rho)^{\dagger}}$ where $\hat{U}^{(\rho)}=e^{is\rho}$

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

$$ho$$
 σ $=$ $e^{is\hat{S}}$ $=$ $\mathcal{E}^{(
ho)}(\sigma)$ \hat{S} : SWAP operator

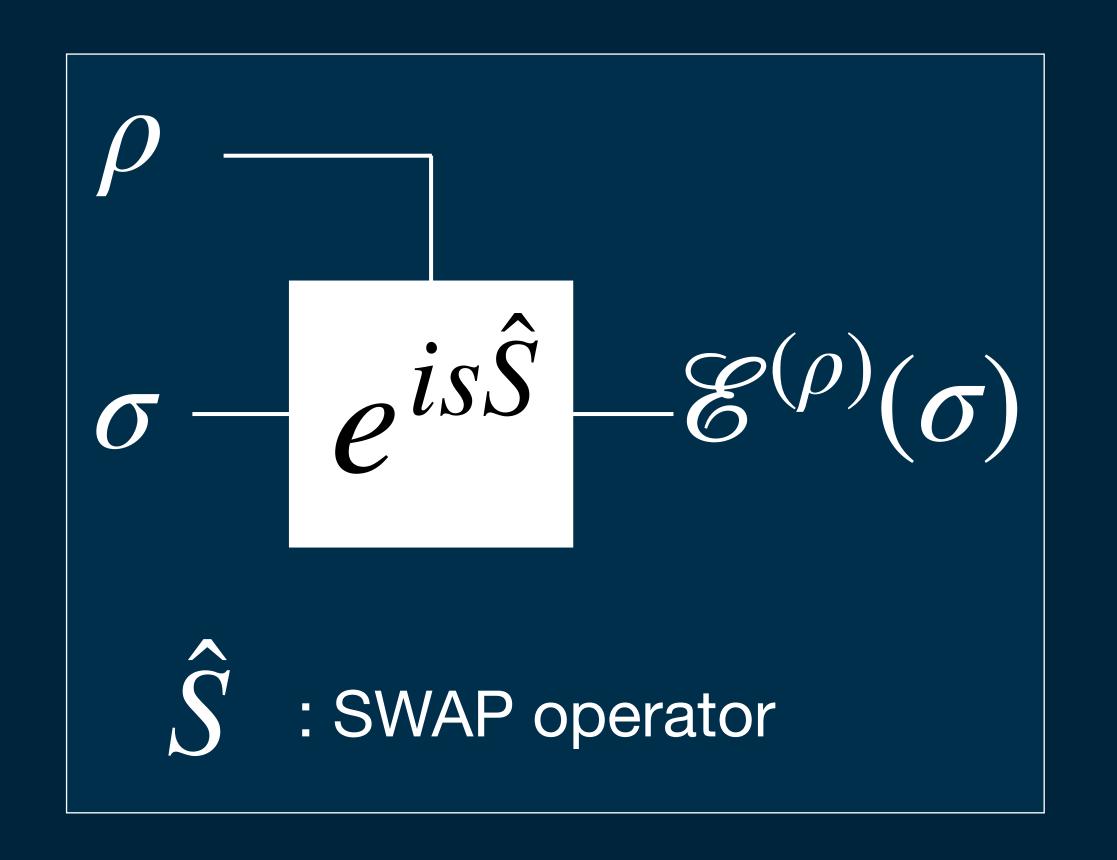
One can show that

$$\|\mathscr{E}_{s}^{(\rho)}(\bullet) - e^{-is\rho}(\bullet)e^{is\rho}\| = O(s^{2})$$

Density Matrix Exponentiation

Suppose we want $\hat{U}^{(\rho)}\sigma\hat{U}^{(\rho)^{\dagger}}$ where $\hat{U}^{(\rho)}=e^{is\rho}$

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)



Improvement via DME shown for sample complexity in Hamiltonian simulation, in comparison to tomographic methods

Kimmel et al., npj Ql 3, 13 (2017)

Generalizations to Hermitianicity-preserving maps exist

Wei. et al, arXiv:2308.07956 (2023)

Density Matrix Exponentiation

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

To achieve a higher accuracy, one can use more copies, e.g. M copies of ρ , with smaller values of s'=s/M:

$$ho$$
 ho ho

$$\|\mathscr{E}_{s/M}^{(\rho)}\circ\cdots\circ\mathscr{E}_{s/M}^{(\rho)}(\bullet)-e^{-is\rho}(\bullet)e^{is\rho}\|=O(s^2/M)$$
 , or $\varepsilon\propto M^{-1}$

Long story short:

Exponential circuit depth of double-brackets can be mitigated by a quantum notion of dynamic programming (QDP), and this comes at the expense of a higher circuit width.

For quantum recursions, QDP provides flexibility to mitigate tradeoffs between depth vs width requirements

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

Double-bracket flow is a Riemannian gradient descent for minimizing energy

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Our main result is that given appropriate choices for H(0) and N the equation $\dot{H} = [H, [H, N]]$ can be used to solve certain standard problems in applied mathematics. From a mathematical point of view, this equation is a way of studying the gradient (steepest descent or steepest ascent) equation associated with functions of the form $\operatorname{tr}(Q\Theta N\Theta^T)$, viewed as functions of Θ with Θ belonging to the orthogonal group. This approach is an outgrowth of the work on matching done in [1].

Brocket, 1991

The double-bracket flow equation

$$\frac{\partial \rho(t)}{\partial t} = -\left[\rho(t), \left[\rho(t), \hat{H}\right]\right]$$

is a gradient descent where the cost function is given as the average energy,

$$\frac{\partial \rho(t)}{\partial t} = -\left[\rho(t), \left[\rho(t), \hat{H}\right]\right] = -\operatorname{grad}_{\rho(t)} \frac{1}{2} \|\rho(t) - \hat{H}\|_{\mathrm{HS}}^2 = -\operatorname{grad}_{\rho(t)} \langle \hat{H} \rangle_t$$

Imaginary-time evolution is a framework for minimizing energy

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

$$|\Psi(t)\rangle = \frac{e^{-t\hat{H}}|\Psi_0\rangle}{\|e^{-t\hat{H}}|\Psi_0\rangle\|}, t \in \mathbb{R}$$

Are DBFs and ITE related to one another?

If so, how exactly?

Note that for $t \to \infty$, all higher energy populations become suppressed by e^{-tH} , so the renormalized state should converge to the ground state of the system.

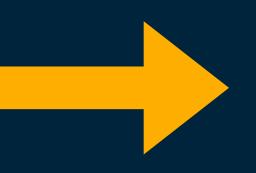
ITE is a standard paradigm for ground state preparation, but recipe for implementation is not always clear, and usually it is compiled variationally...

Imaginary-time evolution is the solution for double-bracket flow equation

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

$$\frac{\partial \rho(t)}{\partial t} = [\rho(t), [\rho(t), -\hat{H}]]$$

Imaginary-time evolution is a solution!



$$|\Psi(t)\rangle = \frac{e^{-tH}|\Psi_0\rangle}{\|e^{-t\hat{H}}|\Psi_0\rangle\|}, t \in \mathbb{R}$$

Assuming the initial state $ho(0) = |\Psi(0)\rangle\langle\Psi(0)|$ is pure

Implications: The explicit recipe for DBQAs can be used to implement ITE.

Guarantees for ITE energy decrease: fluctuation-refrigeration relation

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Taking the ITE state

$$|\Psi(\tau)\rangle = \frac{e^{-\tau \hat{H}}|\Psi_0\rangle}{\|e^{-\tau \hat{H}}|\Psi_0\rangle\|}, \tau \in \mathbb{R}$$

(We switch t to τ to remind that this is not real "time" as we physically think of)

A direct computation shows that

$$\frac{\partial E(\tau)}{\partial \tau} = -2V(\tau),$$

Where $E(\tau)$, $V(\tau)$ are the average energy and energy fluctuations of $|\Psi(\tau)\rangle$

The recipe for implementing ITE with double-brackets should give us something similar...

Fluctuation-refrigeration relation for DB-QITE

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Initialize our system in some $|\Psi_0\rangle$, and apply the recursive DB approximate implementation for ITE: in particular, in the k-th step, for a time step of $\Delta \tau = s_k$,

$$|\Psi_k\rangle$$
 — $R_H(-\sqrt{s_k})-R_{\rho_k}(\sqrt{s_k})-R_H(\sqrt{s_k})$ — $|\Psi_{k+1}\rangle$

We get

$$E_{k+1} \le E_k - 2s_k V_k + \mathcal{O}(s_k^2)$$

In particular, if the step sizes are chosen such that $s_k \leq 2V_k \cdot \left[5\epsilon_k \|\hat{H}\|^4\right]^{-1}$, then

$$E_{k+1} \leq E_k - s_k V_k$$

Guarantees of fidelity convergence for DB-QITE

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Given the system Hamiltonian \hat{H} , initialize system in some $|\Psi_0\rangle$, which has a fidelity F_0 to the ground state of \hat{H} .

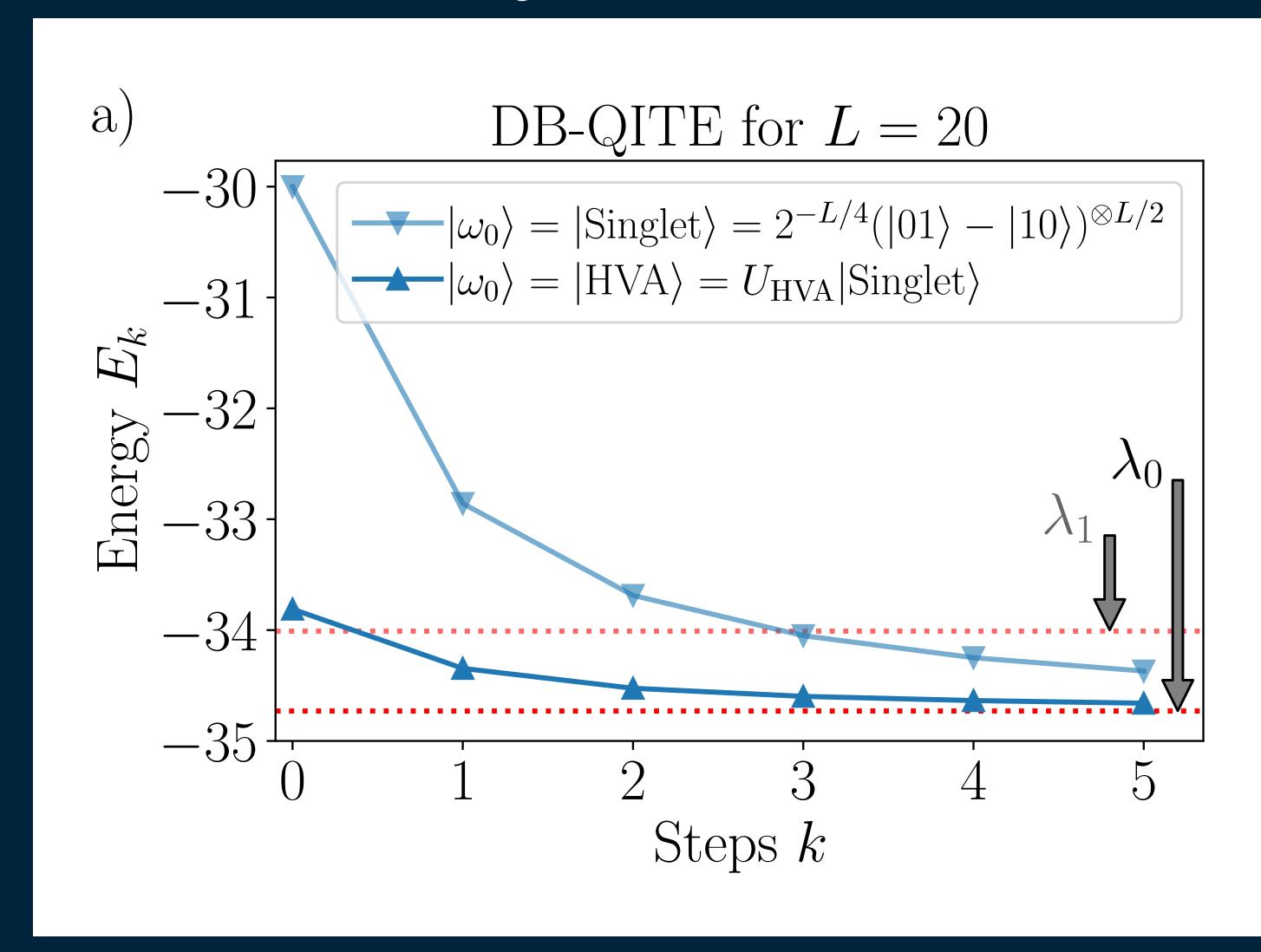
Then there is a way to choose the time steps in the DB-QITE algorithm, such that the fidelity to ground state at step k,

$$F_k \geq 1-q^k$$
, for $q=1-\frac{\Delta^2 F_0}{12\|\hat{H}\|^3}$ Δ : Spectral gap

(Exponential convergence)

Numerical performance of DB-QITE

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

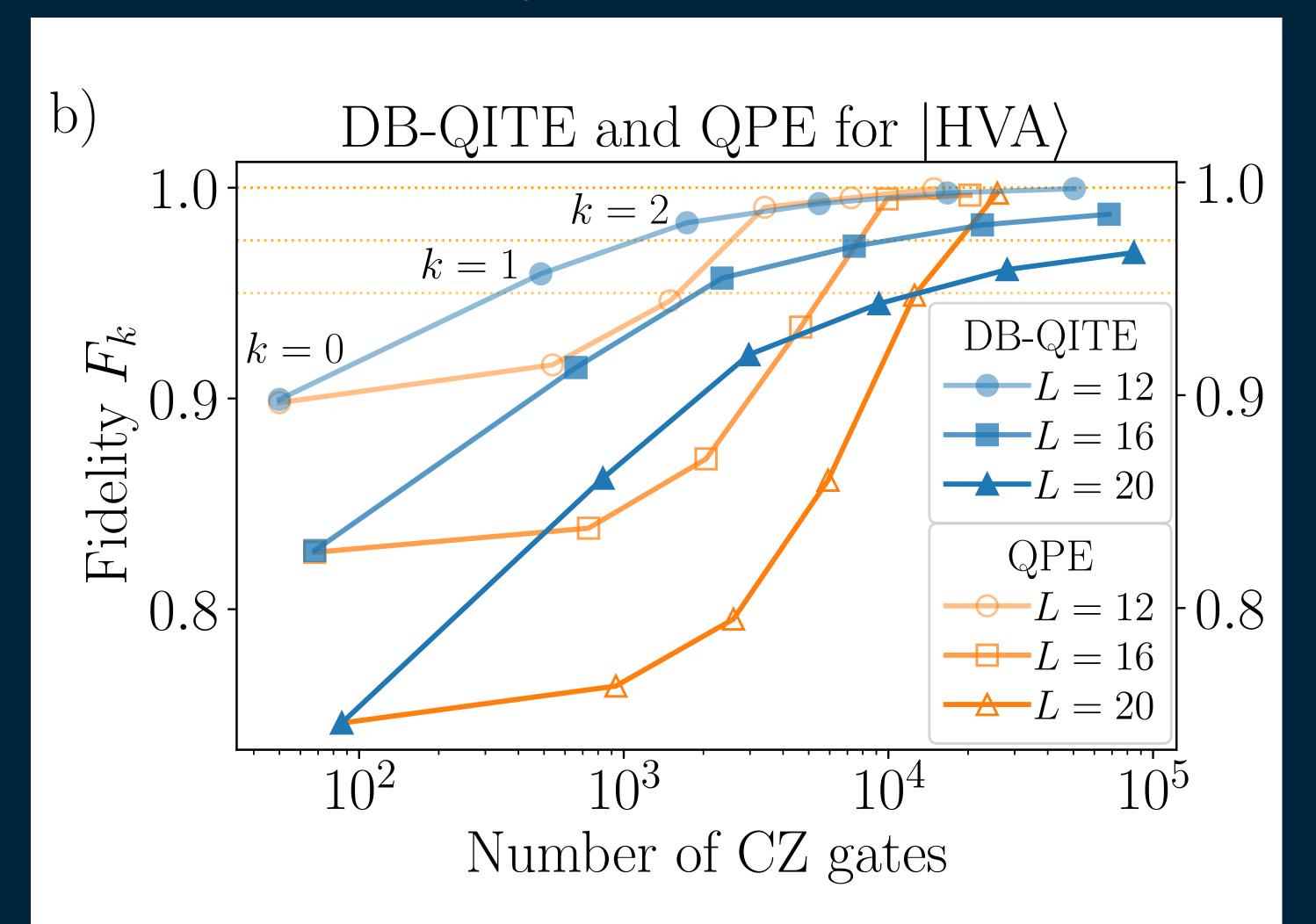


1d Heisenberg model for L=20 qubits, where $|HVA\rangle$ is a warmstart state output from a variational circuit. λ_0 , λ_1 are ground state and first excited state energies.

- systematic decrease of energy observed as predicted, for small number of iterations.

Pitting DB-QITE numerically against Quantum Phase Estimation

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

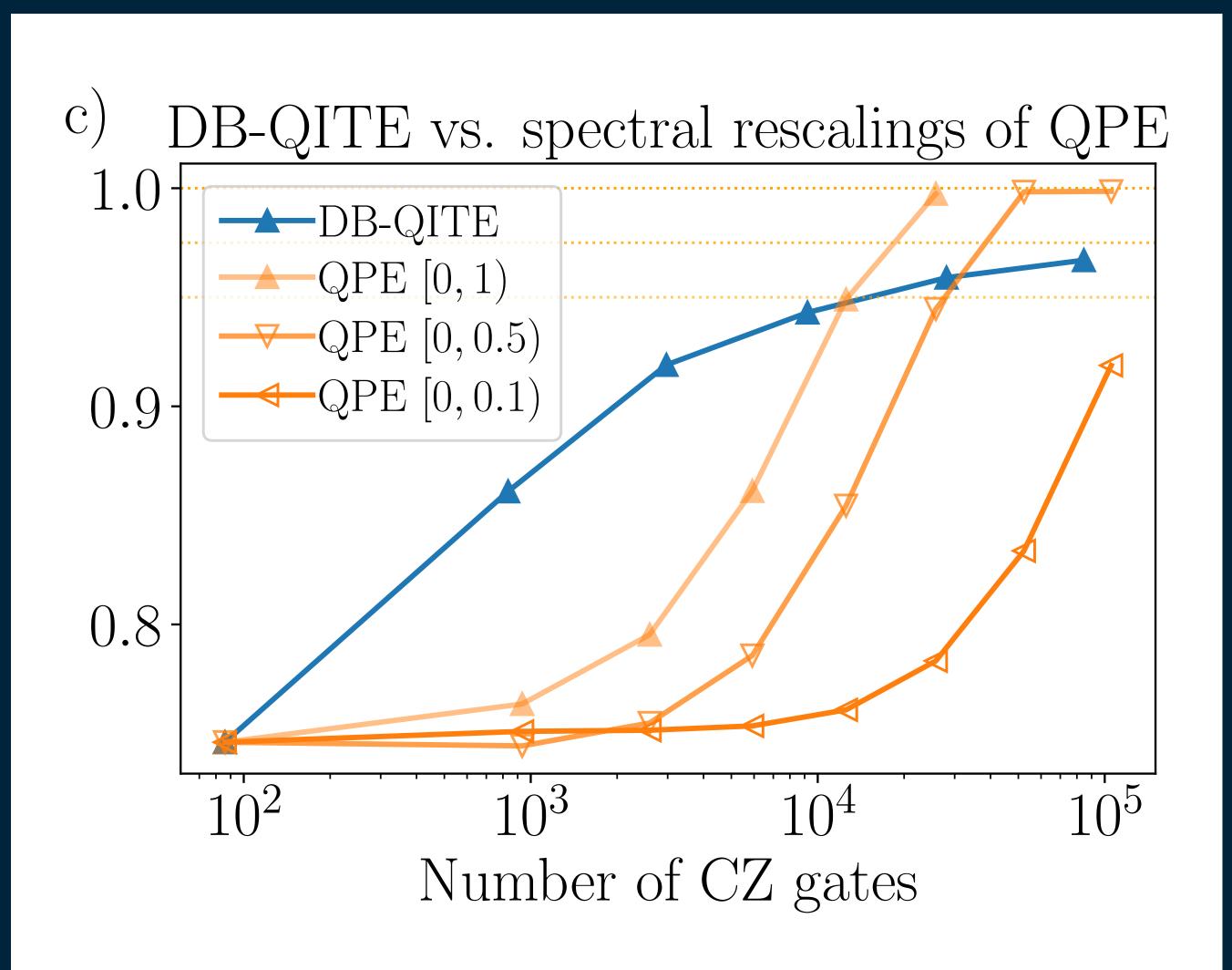


Observations:

- In the low CZ count regime (for near-term processors), DB-QITE outperforms QPE
- In high CZ count regime (e.g. fault-tolerant scenarios), QPE outperforms* DB-QITE
 - Assumptions*: favourable conditions for QPE, e.g. one knows the value of λ_0 .

Pitting DB-QITE numerically against Quantum Phase Estimation

M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Observations:

- Deterioration of QPE performance when ignorance of λ_0 leads to rescaling of the Hamiltonian spectrum
- DB-QITE unaffected.

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

Can DBQAs do other things?

How are they related to other known types of quantum algorithms?

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Quantum signal processing: the action of a polynomial function $p(\hat{H})$,

$$|\Psi'\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
 for some Hermitian \hat{H}

A general, K-degree polynomial $p(\hat{H})$ can be written as

$$p(\hat{H}) = \prod_{k=1}^{K} (H - \alpha_k I),$$

where α_k are complex numbers

Ex:

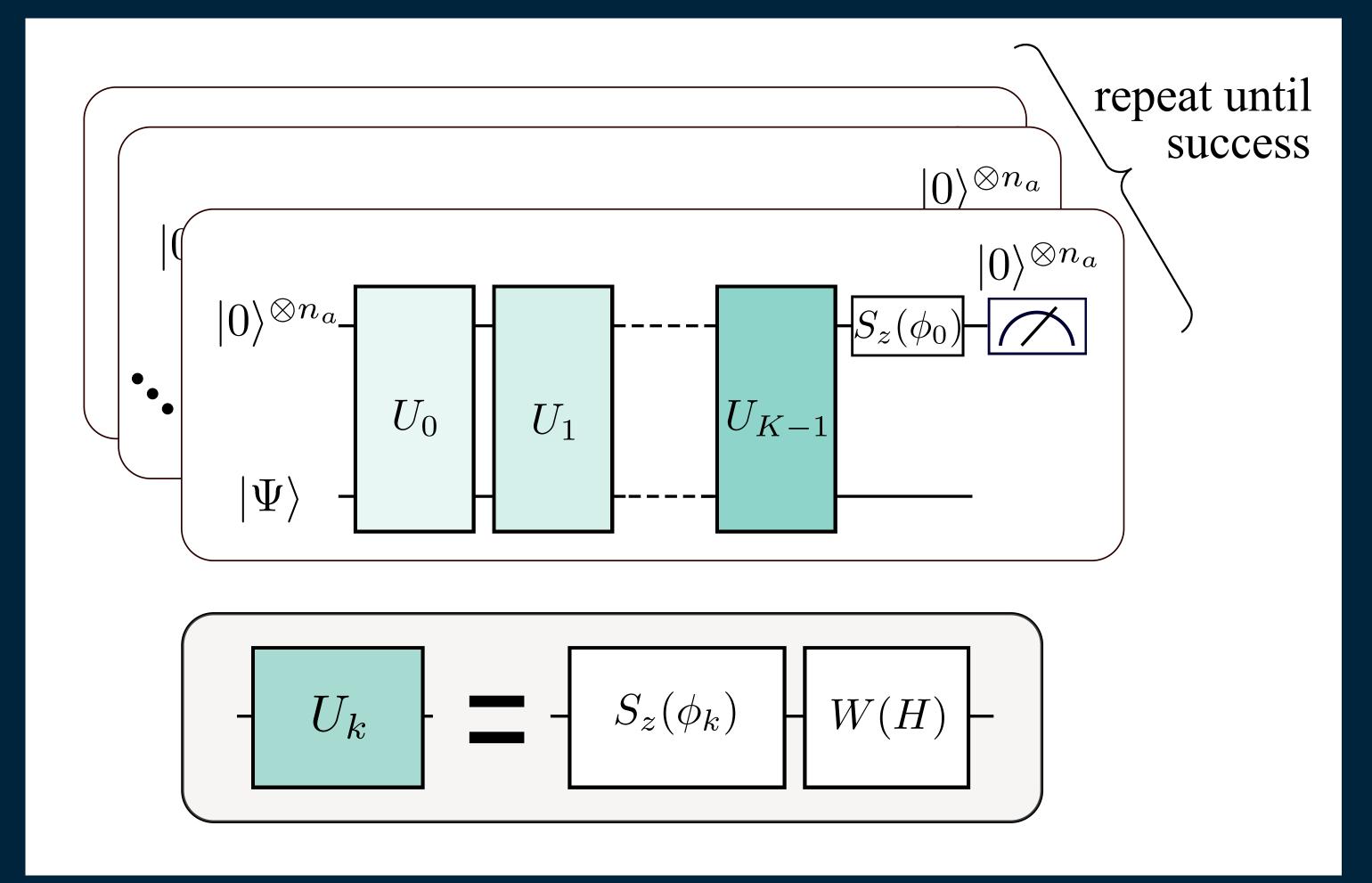
Real-time evolution: $p(\hat{H}) \approx \exp(i\hat{H}t)$

Imaginary-time evolution: $p(\hat{H}) \approx \exp(-\hat{H}\tau)$

Matrix inversion: $p(\hat{H}) \approx \hat{H}^{-1}$

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Typical implementation of QSP: qubitization, linear combination of unitaries (LCU)



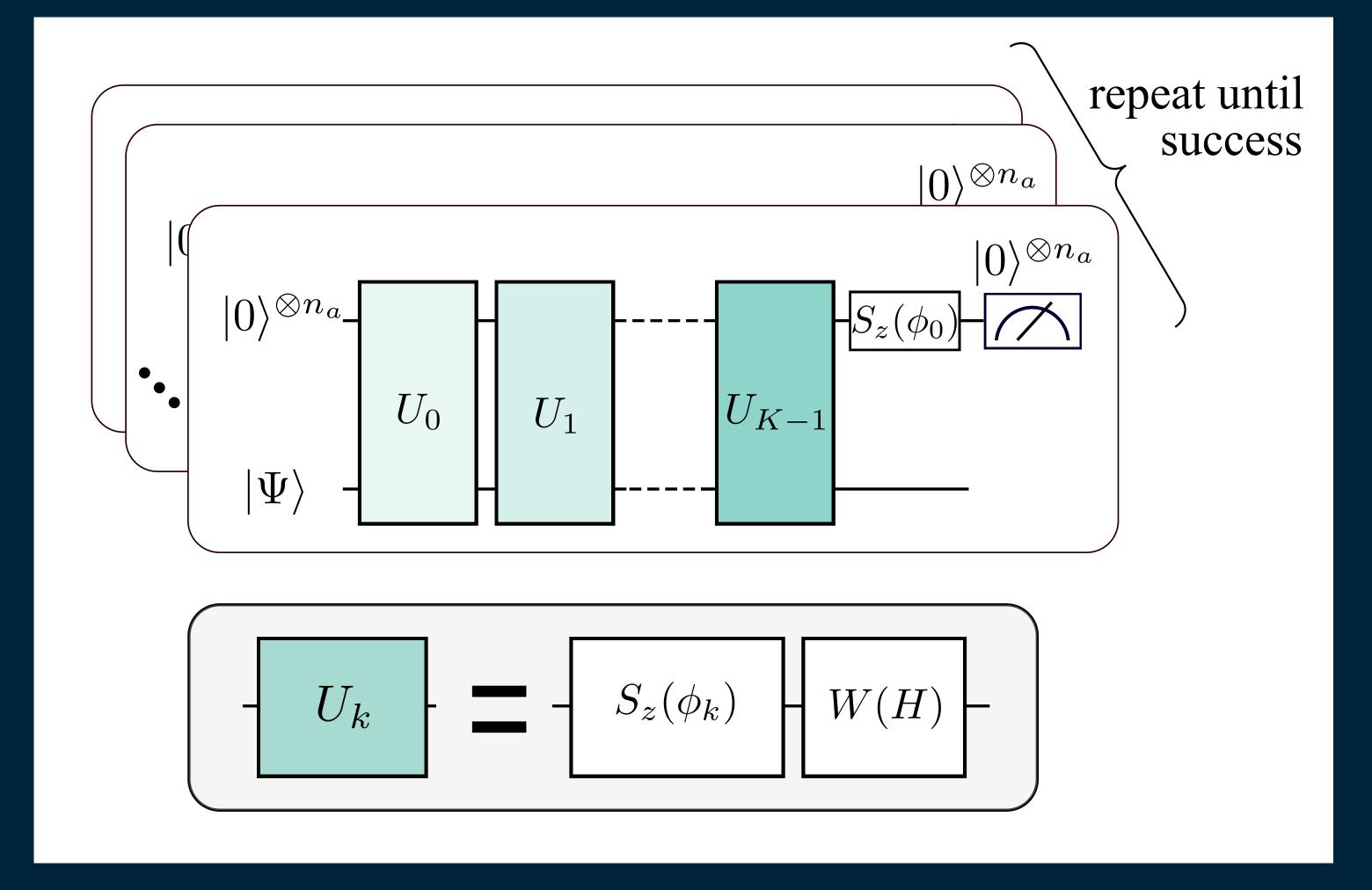
Signal operators W(H): feed information about H

Signal processing operators $S_z(\phi_k)$: feed choice of phases that relate to roots of p(H)

Initialize system in $|\Psi\rangle$ with some ancillas, and at the end measure ancillas. Success can be associated with measuring 000...0 at the end.

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Typical implementation of QSP: qubitization, linear combination of unitaries (LCU)



General challenge:

Post-selection often necessary, leading to probabilistic success (sometime exponentially small in system size)

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Observation: if we want to implement a linear polynomial $p(\hat{H}) = \hat{H} - \alpha I$ for some $\alpha \in \mathbb{R}$, then we can implement this QSP task with the following unitary

$$e^{s_{\Psi}[\Psi,\hat{H}]}|\Psi\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
 for some value of $s_{\Psi}!$

In particular, s_{Ψ} depends on the expectation value and variance of \hat{H} for the state Ψ , i.e.

$$s_{\Psi} = \frac{-1}{\sqrt{V_{\Psi}}} \arccos \left(\frac{E_{\Psi} - \alpha}{\sqrt{V_{\Psi} + (E_{\Psi} - \alpha)^2}} \right)$$

Note that this is an equality, not an approximation! In particular, s_{Ψ} is not small, but is a value that depends on the state Ψ .

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Observation: if we want to implement a linear polynomial $p(\hat{H}) = \hat{H} - \alpha I$ for some $\alpha \in \mathbb{R}$, then we can implement this QSP task with the following unitary

$$e^{s_{\Psi}[\Psi,\hat{H}]}|\Psi\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
 for some value of s_{Ψ}

Proof sketch:

1) Expand the exponential,

$$e^{S_{\Psi}[\Psi,\hat{H}]} = \sum_{k=0}^{\infty} \frac{s^k}{k!} [\Psi,\hat{H}]^k$$

2) Look at the first order term acting on Ψ ,

$$[\Psi, \hat{H}] |\Psi\rangle = \Psi \hat{H} |\Psi\rangle - \hat{H} \Psi |\Psi\rangle$$
$$= E_{\Psi} |\Psi\rangle - \hat{H} |\Psi\rangle$$

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Observation: if we want to implement a linear polynomial $p(\hat{H}) = \hat{H} - \alpha I$ for some $\alpha \in \mathbb{R}$, then we can implement this QSP task with the following unitary

$$e^{s_{\Psi}[\Psi,\hat{H}]}|\Psi\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
 for some value of s_{Ψ}

Proof sketch:

3) Look at the second order term,

Although $([\Psi,\hat{H}])^2$ is in general arbitrary, its action on $|\Psi\rangle$ is "effectively" identity

$$[\Psi, \hat{H}]^{2} |\Psi\rangle = E_{\Psi}^{2} |\Psi\rangle - E_{\Psi}H|\Psi\rangle - \langle \Psi H^{2} \rangle \Psi |\Psi\rangle + E_{\Psi}H|\Psi\rangle$$
$$= -V_{\Psi}|\Psi\rangle.$$

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Observation: if we want to implement a linear polynomial $p(\hat{H}) = \hat{H} - \alpha I$ for some $\alpha \in \mathbb{R}$, then we can implement this QSP task with the following unitary

$$e^{s_{\Psi}[\Psi,\hat{H}]}|\Psi\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
 for some value of s_{Ψ}

Proof sketch:

4) This means that odd versus even terms in the exponential can be grouped into components of $|\Psi\rangle$ and $\hat{H}|\Psi\rangle$:

$$e^{s[\Psi,\hat{H}]}|\Psi\rangle = a(s, E_{\Psi}, V_{\Psi})|\Psi\rangle + b(s, E_{\Psi}, V_{\Psi})\hat{H}|\Psi\rangle$$

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Observation: if we want to implement a linear polynomial $p(\hat{H}) = \hat{H} - \alpha I$ for some $\alpha \in \mathbb{R}$, then we can implement this QSP task with the following unitary

$$e^{s_{\Psi}[\Psi,\hat{H}]}|\Psi\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
 for some value of s_{Ψ}

To implement this exponential, we again use group commutators but don't (yet) need the recursive structure here as compared to DB-QITE, just:

$$e^{s[\Psi,\hat{H}]} = \left(e^{ia\Psi}e^{ia\hat{H}}e^{-ia\Psi}e^{-ia\hat{H}}\right)^N + O\left(s^{3/2}/\sqrt{N}\right)$$

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Observation: if we want to implement a linear polynomial $p(\hat{H}) = \hat{H} - \alpha I$ for some $\alpha \in \mathbb{R}$, then we can implement this QSP task with the following unitary

$$e^{s_{\Psi}[\Psi,H]}|\Psi\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|} \quad \text{for some value of } s_{\Psi}$$

What if $\alpha \in \mathbb{C}$? Note that since Ψ is pure, we have $e^{i\theta\Psi} = I + (e^{i\theta} - 1)\Psi$. I can then start with $(\hat{H} - aI)$ for some $a \in \mathbb{R}$, and observe that

$$(I - r\Psi)(\hat{H} - aI)|\Psi\rangle = \hat{H}|\Psi\rangle - \alpha|\Psi\rangle + r|\Psi\rangle\langle\Psi|\hat{H}|\Psi\rangle - \alpha r|\Psi\rangle$$

 $E_{\mathbf{\Psi}}$

An additional $e^{i\theta\Psi}$ allows us to address complex roots

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Extending to general polynomials, DBQAs provide us a recipe to implement any

QSP protocol for
$$|\Psi'\rangle = \frac{p(\hat{H})|\Psi\rangle}{\|p(\hat{H})|\Psi\rangle\|}$$
:

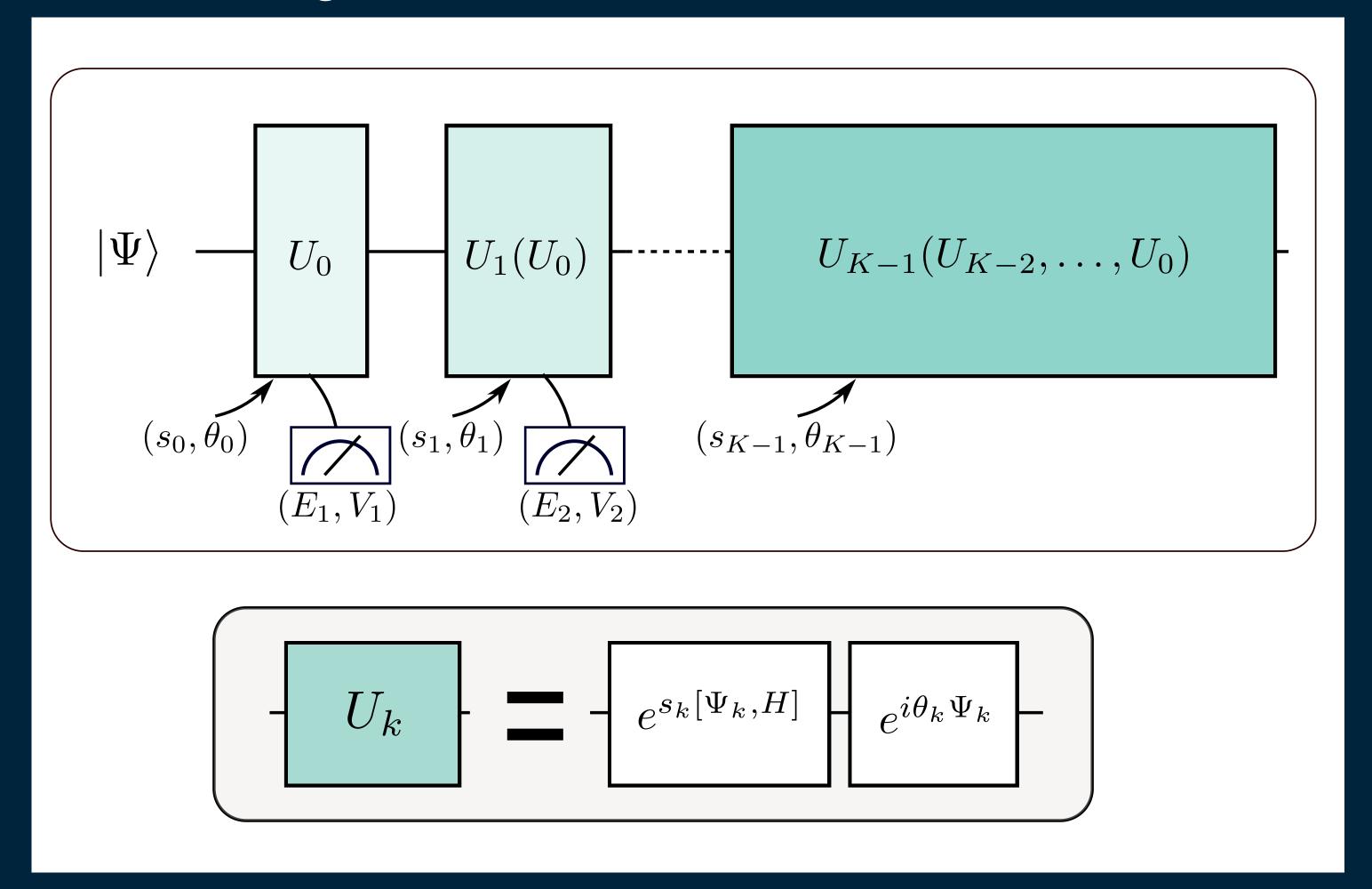
Recursiveness comes in here, in particular one needs to estimate E_k, V_k in order to determine implementation parameters s_{k+1}, θ_{k+1}

$$\frac{K-1}{\prod} e^{i\theta_k \Psi_k} e^{s_k [\Psi_k, \hat{H}]} |\Psi\rangle,$$

$$k=0$$
 for some values of θ_k , s_k

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Summarizing DB method for QSP



No ancillas or post-selection

Instead, estimates of E_k , V_k required at every turn so that s_{k+1} , θ_{k+1} can be chosen for the next iteration

Supplementary heuristics can also be used to choose

$$S_{k+1}, \theta_{k+1}$$

Grover's algorithm looks eeriely similar to DBQA reflectors...

Y.Suzuki, M.Gluza, J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

Recall that Grover's algorithm interleaves:

$$|\psi_0\rangle$$
 — $D\left(\alpha_k\right)$ — $U_f(\beta_k)$ — $\approx |\psi^*\rangle$ $k \text{ times}$

oracles
$$U_f(\beta) = e^{i\beta H_f}$$
, where $H_f = \sum_{x \in \text{sol.}} |x\rangle\langle x|$ projects onto solution states, and

- reflectors $R(\alpha)=e^{i\alpha\psi_0}$ around initial state.

Nielsen and Chuang: can be seen as doing Hamiltonian simulation with $\hat{H}=H_f+H_i$ and trotterizing

... because it approximates DBFs!

Y.Suzuki, M.Gluza, J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

Lemma 1 (ITE solves the unstructured search problem). Given the projector Hamiltonian \hat{H}_f in Eq. (2) and the initial state in Eq. (1), the ITE state converges to the solution state in Eq. (3) as $\tau \to \infty$, i.e.,

$$\lim_{\tau \to \infty} \frac{e^{\tau \hat{H}_f} |\psi_0\rangle}{\|e^{\tau \hat{H}_f} |\psi_0\rangle\|_2} = |\psi^*\rangle \tag{4}$$

Lemma 2 (Equivalence of ITE and commutator flow for projector Hamiltonians). Let \hat{H}_f be the projector Hamiltonian in Eq. (2). Then, for any ITE evolution time τ , there exists a time duration s_{τ} such that

$$\frac{e^{\tau \hat{H}_f} |\psi_0\rangle}{\|e^{\tau \hat{H}_f} |\psi_0\rangle\|_2} = e^{s_{\tau}[\hat{H}_f,\psi_0]} |\psi_0\rangle = |\psi_{s_{\tau}}\rangle. \tag{7}$$

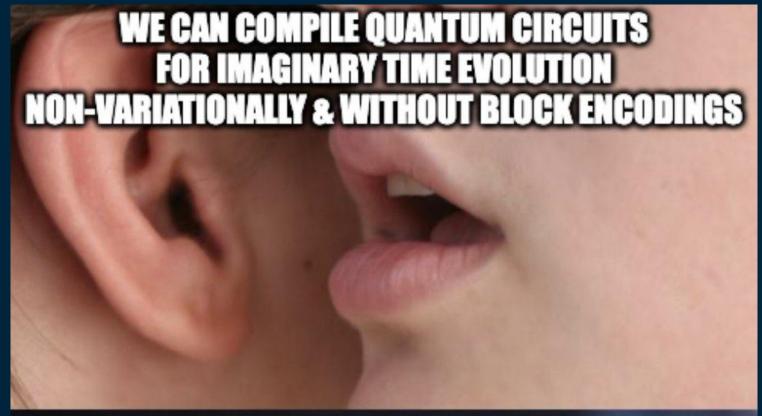
... because it approximates DBFs!

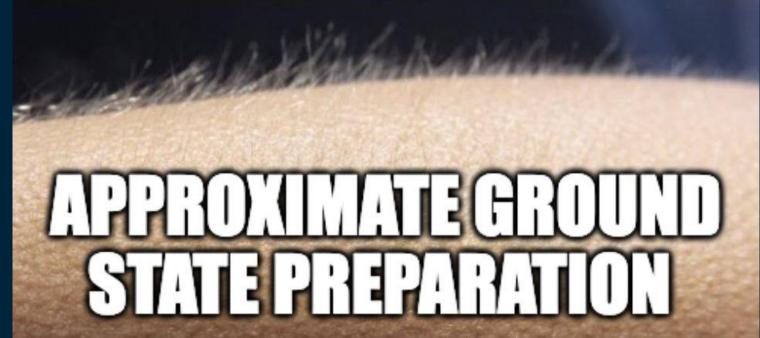
Y.Suzuki, M.Gluza, J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

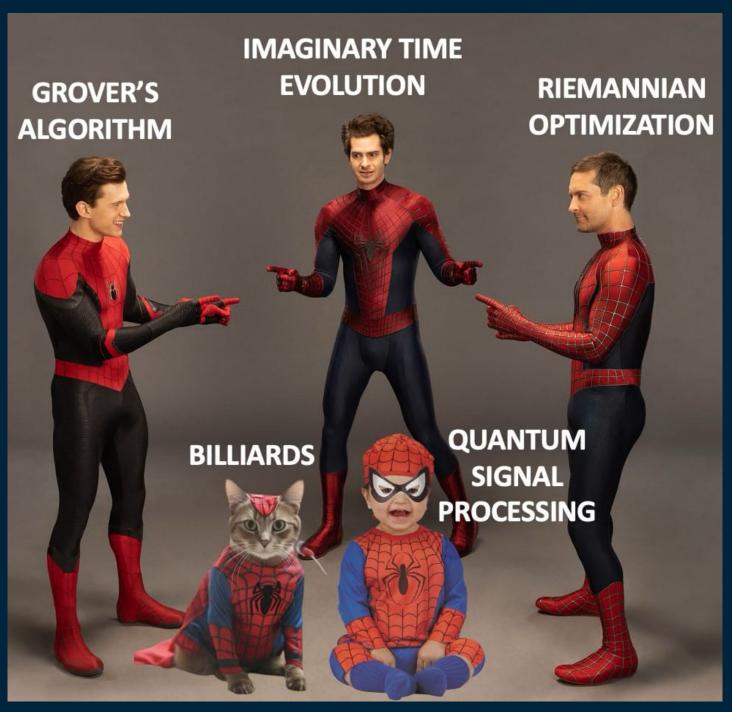
Brief recap of results:

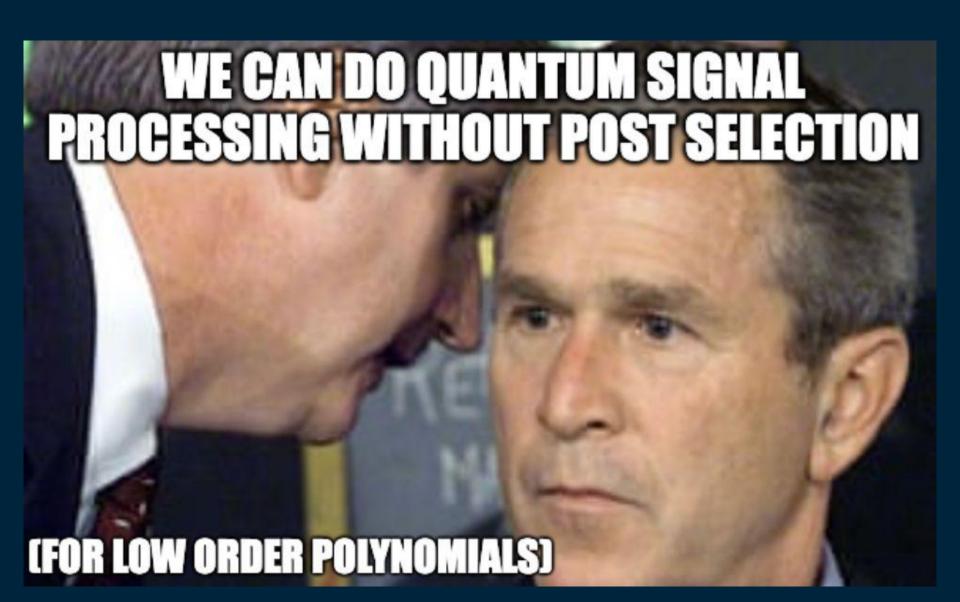
- ITE traces a geodesic for unstructured search,
- ITE's geodesic length determines query complexity of Grover's algorithm,
- Grover iterations implement a generic quantum signal processing sequence (with appropriate choices of reflection angles).

Take home messages









Take home messages

Thanks for listening! Happy to take questions

What is a double-bracket flow equation?

In the context of quantum information, it is a non-linear Schrodinger equation. A steady state solution exists and is energy-diagonal

How do we implement a double-bracket flow algorithmically?

By approximating it with short-time Hamiltonian evolutions (back and forth), interleaving with reflections that depend on the state

What is the steady state of a double-bracket flow?

It achieves imaginary-time evolution, and is also the steepest descent on the Riemannian manifold for minimizing system average energy.

What are the implications for the above?

We can design explicit quantum algorithms that have theoretical guarantees on performance, and bypass methods such as variational strategies or post-selection. The cost (depth) can be flexibly mitigated by increasing width. Numerics demonstrate some promise. Bridges understanding between different forms of quantum algorithm design.