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What is a double-bracket flow equation?
How do we implement a double-bracket flow algorithmically?
What is the steady state of a double-bracket flow?

What are the implications for the above?



What is a double-bracket flow equation?



N (t) _ [ N( t), [ N( t) , H]] A rate equation for the matrix N(t), which is

determined by a “double bracket (commutator)”.

H, N are symmetric, real n X n matrices

Our main result is that given appropriate choices for H(0)
and N the equation H = [H,[H,N]| can be used to solve
certain standard problems in applied mathematics. From a

mathematical point of view, this equation is a way of study-
ing the gradient (steepest descent or steepest ascent) equation
associated with functions of the form tr(QON®©T), viewed as
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N (t) _ [ N( t), [ N( t) , H]] A rate equation for the matrix N(t), which is

determined by a “double bracket (commutator)”.

H, N are symmetric, real n X n matrices

Observation by Brockett: if H is diagonal and non-
degenerate, and N(0) is symmetric, then

N(co0) := lim N(?)
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N (t) _ [ N( t), [ N( t) , H]] A rate equation for the matrix N(t), which is

determined by a “double bracket (commutator)”

H, N are symmetric, real n X n matrices

Proof sketch (generalization for non-degenerate H and complex matrices also possible):

d
1) consider - tr(HN) = tr N[H, [H,N]] = — tr(HN — NH)?

d
2) note that commutators are antisymmetric, so P tr(HN) = tr(HN — NH)(HN — NH)",

meaning that tr(HN) is monotonically increasing, and upper bounded, i.e. its derivative
goes to 0. This can happen only if N, H commute. Given that we assume H non-
degenerate, this means /N becomes diagonal.
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evolving in Euclidean n-space. Although from our point of view
it looks accidental, the equations turn out to have properties Uwe Helmke - John B. Moore
in common with equations which have appeared in the theory R. Brockett Editors

of completely integrable Hamiltonian systems. In particular,

although they are not the same, the equations are similar to O 2 2 2
the matrix version of the (finite) Toda lattice problem when ptl m |Zat| 0 n
studied from the “Lax pair” point of view. (See, for example,

the work of Deift et al. [4] or the recent survey [6].) o a nd Dyn a m ica |

Gtazek, Wilson, and Wegner, 1993-1994. applied flow SyStemS
equations for Hamiltonians of many-body systems

Flow-equations for Hamiltonians
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1 Introduction

In order to solve a many-particle problem one would like to diagonalize the Hamilto-
nian and to calculate from the eigenstates and their energies the observables of interest.

However, apart from a few explicitly solvable models this is not possible. Therefore one Sy St em at| C eXp o S|t| on o f _t eCh n ical

may try — and this will be done here — to transform the Hamiltonian in such a way

that it becomes more and more diagonal. More precisely unitary transformations will tOOlS surrou nd | ng BrOC kett ’S ﬂOW

be applied to the Hamiltonian so that the off-diagonal matrix elements become smaller

and smaller. eq U at | on
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0 .
% = [p(1), [p(2), — H]]

Where H is the Hamiltonian of the system

Brockett, Glazek, Wilson and Wegner’s results
collectively tell us that as 7 increases,

p(1) becomes increasingly diagonal in the basis of H:
and eventually “equilibrates” to a steady, energy-incoherent state



Double-bracket flow vs the von Neumann equation

0p(1) o A ap(?) . 2
—— == p®.[p(), H1] —— = ilp), H]

Non-linear Linear

Natural time-evolution
How can we implement this? _ —iHt iHt
T p(t) = e " p(0)e




How do we implement a double-bracket flow algorithmically?



M. Gluza, Quantum 8, 1316 (2024)

1) Assume first that p(f) = | W(¢) )(W(?) | is pure. Note that we can then
rewrite the double-bracket equation into its action on the pure state,

0, (D)) = [p(0), H] | P(1))

2) For short times Az, we have that | W(AD)) ~ -‘ Y(0))

Unitary, since [p(0), ﬁ] is anti-Hermitian



M. Gluza, Quantum 8, 1316 (2024)

3) Recall product formulas for small s,
eS[A,B] ~ el\/EB el\/EA e—l\/EB 6—1\/§A i @(S3/2)

At[p,H]

4) Note that the above, applied to our exponential map e gives

Backward and forward usual time evolution

“Reflection operators around p(0)”



M. Gluza, Quantum 8, 1316 (2024)

5) In the next time step, the map needs to be updated to e
Generally, this gives us a recursive formula

At]

* freedom to choose time step size in every iteration

In fact, the first reflector is unnecessary:




Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

pn — ﬁ(ﬂn_ﬁpn_ 1 ( ﬁ(Pn_O)T

Assumptions:

® The nin recursive step U1 is a unitary and depends on the previous
result p, ;.
@ |Initial state p, and U0 are known and given

® The exact form of U”) as a function of p Is known



Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

| et’s look at 0( D) _ isp Remember: we assume we are given p, and U, our
the reflection — €

goal is to implement U®

® Observe that since we do know p,,, and furthermore p; = U Po (U we also
have that /1 = lA](po)eiSPO(lA](pO))T, and lA](pl) is possible to implement without
knowing p; — we just need to call the unitary U and its inverse.

® This example is trivial on its own....

® However, UP) = V- elsP . V, is not so trivial, and yet we still have
[7P) = [J®Po) . pispo . [7(P0)"

® For a more general unitary U®?) = ‘A/LeiSLp‘A/L_l---Vleislpr/O, we still can do this: [/

Is possible if we call the unitary U»0) a number of 2L times.



Naive implementation (unfolding) leads to exponential circuit depth
Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Sticking with the more general example of U = V,etPV, _ .-V, €™V, to
execute U2,

A . unfolding, reminiscent of
® wecall U (p1) a number of 2L times, classical naive methods

® each call for UV is done by calling U for 2L times, Hen memen
® Hence, the implementation of lA](pz) requires 417 calls of lA](pO). Similarly,
Urs) requires 8L° calls of U .
® In other words, ¢™Pn = [JPu-1... [P0 eisPo( TP ... ([Pu-D)T
® O((2L)") steps (i.e. circuit depth) is required for UPy-1

Surely it’ll be faster to compute this if we have a dynamic version of quantum computing,

making use of quantum memory?




Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

To do so, we need to consider circuits that allow us to take in instructions

encoded in the form of quantum states p,,

[/ (L) O ﬁ (/Ok)Jr




Suppose we want U D)

where UP) = P
Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014) v €

One can show that

|EP(o) — e )e™|| = O(s?)

S : SWAP operator




Suppose we want U cU 2
where UY) = ¢'5°

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2074)

S : SWAP operator

Improvement via DME shown for sample
complexity in Hamiltonian simulation, in

comparison to tomographic methods
Kimmel et al., npj QI 3, 13 (2017)

Generalizations to Hermitianicity-preserving

maps exist
Weli. et al, arXiv:2308.07956 (2023)



Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

To achieve a higher accuracy, one can use more copies, e.g. M copies of p, with

smaller values of s’ = s/M:

&) (o)

|&0) o0 &V (o) —e ™ ()e™|| = O(s*/M) jor € xM™




Long story short:
Exponential circuit depth of double-brackets can be mitigated by a
quantum notion of dynamic programming (QDP),

and this comes at the expense of a higher circuit width.

For quantum recursions, QDP provides flexibility to mitigate tradeoffs
between depth vs width requirements

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)



What is the steady state of a double-bracket flow?



M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Our main result is that given appropriate choices for H (0) The double-bracket flow eq uation
and N the equation H = [H,[H,N]|| can be used to solve

certain standard problems in applied mathematics. From a 0 p(f) A
mathematical point of view, this equation is a way of study- L~ [ p(t), [ p(t), H]]
ing the gradient (steepest descent or steepest ascent) equation Ot

associated with functions of the form tr(QON®©T), viewed as

functions of © with © belonging to the orthogonal group. This is g gradient descent where the
approach is an outgrowth of the work on matching done in [1]. R
. FERNERENEEE Ccost function is given as the

Brocket, 1991 average energy,

op(t A a



Imaginary-time evolution Is a framework for minimizing energy
M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

e~H R Are DBFs and ITE related to
T —— 0 1 E R one another?
[e= | Wo)l

| P()) =

If so, how exactly?

Note that for r — ©0, all higher energy populations become suppressed by e_tH,

so the renormalized state should converge to the ground state of the system.

ITE is a standard paradigm for ground state preparation, but recipe for
Implementation is not always clear, and usually it is compiled variationally...



M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

p( ) Imaginary-time evolution Is a solution!

0 .
P 1o, (), — B
ot i
e " |W¥,)
—) V() =———C 1R
|e= | W)l

Assuming the initial state

p(0) = [F(0))(Y(0)] is

pure Implications: The explicit

recipe for DBQAs can be used
to implement ITE.



Guarantees for ITE energy decrease: fluctuation-refrigeration relation
M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Taking the ITE state

e™™ | W) . . »
| \P(T» = 7€ R (We switch t to T to remind that this is not real
|e—H | ¥,)| ’ “time” as we physically think of
- . E(7)
A direct computation shows that p = — 2V(7),
T

Where E(7), V() are the average energy and energy fluctuations of | W(7))

The recipe for implementing ITE with double-

brackets should give us something similar...



M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Initialize our system in some | ‘PO), and apply the recursive DB approximate
implementation for ITE: in particular, in the k-th step, for a time step of A7 = s,

We get Ei i1 S E =25V, + O(sy)

~1
In particular, if the step sizes are chosen such that 5, < 2V - [SGkHH H4] , then

Epy < By = 85,V



M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Given the system Hamiltonian H, initialize system in some | ¥,)), which has a

fidelity £ to the ground state of H.
Then there is a way to choose the time steps in the DB-QITE algorithm, such that

the fidelity to ground state at step &,

A%F
F, > ] — qk, forg =1 — —AO A: Spectral gap
12]|H||?

(Exponential
convergence)



M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

DB-QITE for L = 20

¥—|wp) = |Singlet) = 27/4(]01) — [10))®L/?2
A—|wy) = |HVA) = Ugya|Singlet)

1d Heisenberg model for L=20
qubits, where | HVA) is a warm-
start state output from a variational

circuit. 4y, 4; are ground state and
first excited state energies.

- systematic decrease of energy
observed as predicted, for small
number of iterations.



M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Observations:

- In the low CZ count regime (for
near-term processors), DB-QITE
outperforms QPE

- In high CZ count regime (e.qg.
fault-tolerant scenarios), QPE
outperforms* DB-QITE
- Assumptions™®: favourable

conditions for QPE, e.g. one

knows the value of A,

107 10°
Number of CZ gates




M.Gluza, J.Son, B.H.Tiang, R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

C) DB-QITE vs. spectral rescalings of QPE Observations:

1.0 —4—DB-QITE

QPE [0, 1) - Deterioration of QPE
QPE [07 0.5) performance when ignorance

QPE [0, 0.1) of 4, leads to rescaling of the

Hamiltonian spectrum
- DB-QITE unaffected.

10* 10°
Number of CZ gates




Outline

What are the implications for the above?

Can DBQAs do other things®?

How are they related to other known
types of quantum algorithms?



Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Quantum signal processing: the action of a polynomial function p(ﬁ),

W) =

p(H)| W)
Ip(H) | )|

A general, K-degree polynomial
p(H) can be written as

K
pHE) = | | H - D).
k=1

where q; are complex numbers

for some Hermitian H

EX:
Real-time evolution: p(ﬁ) ~ exp(iﬁt)
Imaginary-time evolution: p(ﬁ) ~ exp(—ﬁr)

Matrix inversion: p(ﬁ) ~ H!



Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Typical implementation of QSP : qubitization, linear combination of unitaries (LCU)

repeat until
SUCCESS

Signal operators W(H ): feed
information about H

Signal processing operators
S.(¢,): feed choice of phases

that relate to roots of p(H )

Initialize system in | W) with
some ancillas, and at the end

measure ancillas. Success can

be associated with measuring
000...0 at the end.



Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza, Z.Holmes. arXiv:2504.01077

Typical implementation of QSP : qubitization, linear combination of unitaries (LCU)

repeat until

SUCCCSS
General challenge:

Post-selection often
necessary, leading to
probabilistic success
(sometime exponentially
small in system size)
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A\

Observation: if we want to implement a linear polynomial p(I—AI) = H — al for some
a € R, then we can implement this QSP task with the following unitary

; (H)| ¥
es‘I’[T’H] | \P> — p,\—> for some value of sy!
lp(E) | )|
In particular, sy depends on the expectation
value and variance of H for the state Y. ie. Sy = ! arccos Ty

m \/V\P+(E\P—a)2

Note that this is an equality, not an approximation!
In particular, sy is not small, but is a value that depends on the state V.
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A\

Observation: if we want to implement a linear polynomial p(I—AI) = H — al for some
a € R, then we can implement this QSP task with the following unitary

A (H)|¥Y
eS‘P[qJ’H] | ‘P) — p,\—|> for some value of sy
|p(H) | ')
Proof sketch:
1) Expand the exponential, 2) Look at the first order term acting on W,
0 Lk 2 2 2
ot = ) 5 ¥, H]|Y) = YH|¥) - AY|¥)
im0 < = Ey|¥) - A|P)
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A\

Observation: if we want to implement a linear polynomial p(I—AI) = H — al for some
a € R, then we can implement this QSP task with the following unitary

for some value of sy

B )]
Proof sketch: Although ([¥, H1)? is in general arbitrary,
3) Look at the second order term, its action on | V) is “effectively” identity

(W, H? | P) = EZ| W) — EuH | ) — (PH?)Y | P) + EyH | V)
= — Vy|WP).
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A\

Observation: if we want to implement a linear polynomial p(I—AI) = H — al for some
a € R, then we can implement this QSP task with the following unitary

IIP(H)I‘P>|I

for some value of sy

Proof sketch:

4) This means that odd versus even terms in the exponential can be grouped into
components of |W) and H|YV):

eI ] W) = a(s, Ey, V) |¥) + b(s, Ey, Vo)H | V)
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A\

Observation: if we want to implement a linear polynomial p(I—AI) = H — al for some
a € R, then we can implement this QSP task with the following unitary

eS‘P[‘Pﬁ] | ‘P) _ p(lil) | T)
|p(H) ['P) ]

for some value of sy

To implement this exponential, we again use group commutators but don’t (yet)
need the recursive structure here as compared to DB-QITE, just:

+o(s/A)

A A A\
es[‘P,H] — (ela‘PezaHe—la‘Pe—laH)
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A\

Observation: if we want to implement a linear polynomial p(I—AI) = H — al for some
a € R, then we can implement this QSP task with the following unitary

H)|Y
oSwl V1] | ‘{’) — w for some value of sy
|lp(H) |'P)|| vreC

OV _

What if @ € C ? Note that since W is pure, we have e

| can then start with (ﬁ — al) for some a € R, and observe ’[hat SO

(I—r®)H —al)|¥P) = H|P) — a|P) +r|¥YHY|H|P) — ar| P)

An additional e'?Y allows us to address complex roots Loy
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Extending to general polynomials, DBQAs provide us a recipe to implement any

p(H)|¥)

QSP protocol for |W') = A .
[p(H) ['P)|]

Recursiveness comes in here, In particular one
needs to estimate E,, V, in order to determine
implementation parameters sy, (, 0,

e 0¥ el Yl gy

g Sai o s
3
P
(D
;9
]
0
!
SR o - o P e 2 2 o ~

=0

for some values of 0, s,
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Summarizing DB method for QSP

No ancillas or post-selection

Instead, estimates of £, V,
required at every turn so that

Si+ 1> Oy €an be chosen for
the next iteration

Supplementary heuristics can
also be used to choose

St 1> Okt 1
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Recall that Grover’s algorithm interleaves:

k times

oracles Uf(ﬁ) — "M where H, = Z | x){x | projects onto solution states, and

xesol.
- reflectors R(a) = ¢'*¥0 around initial state.

Nielsen and Chuang: can be seen as doing Hamiltonian simulation with H = Hf + H; and trotterizing
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Lemma 1 (ITE solves the unstructured search problem).

Given the projector Hamiltonian H ¢ in Eq. (2) and the initial GROVER’S
state in Eq. (1), the ITE state converges to the solution state in ALGORITHM
Eqg. 3)as T — oo, i.e., |

gé \\

Lemma 2 (Equivalence of ITE and commutator flow for pro-

jector Hamiltonians). Let H 7 be the projector Hamiltonian in
Eq. (2). Then, for any ITE evolution time T, there exists a time
duration s- such that

Pt 70)

le7H5 [40) |2

gl VLU

IMAGINARY TIME

EVOLUTION RIEMANNIAN
@ OPTIMIZATION

u

BILLIARDS le’;'mt“"
!, v ! ‘ b’d{
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Fne \



Y.Suzuki, M.Gluza, J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

Brief recap of results: IMAGINARY TIME
GROVER’S EVOLUTION RIEMANNIAN
_ ALGORITHM OPTIMIZATION
- |ITE traces a geodesic for unstructured = =
search, . ¢
- |ITE’s geodesic length determines |
query complexity of Grover’s .
algorithm,
- Grover iterations implement a generic R tar QUANTUM
| i s>y SIGNAL
quantum signal processing sequence Y procEssING

(with appropriate choices of reflection
angles).




Take home messages

Corporate needs you to find the difference

between this picture and this picture

WE CAN COMPILE QUANTUM CIRCUITS
FOR IMAGINARY TIME EVOLUTION

IMAGINARY TIME
GROVER’S EVOLUTION RIEMANNIAN

_ A
ALGORITHM | OPTIMIZATION - B
T

" WECANDO QUANTUM SIGNAL
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What is a double-bracket flow equation?

In the context of quantum information, it is a non-linear Schrodinger equation. A steady state
solution exists and is energy-diagonal

How do we implement a double-bracket flow algorithmically*?

By approximating it with short-time Hamiltonian evolutions (back and forth), interleaving
with reflections that depend on the state

What is the steady state of a double-bracket flow?

[t achieves imaginary-time evolution, and is also the steepest descent on the Riemannian
manifold for minimizing system average energy,.

What are the implications for the above?

We can design explicit quantum algorithms that have theoretical guarantees on performance, and
bypass methods such as variational strategies or post-selection. The cost (depth) can be flexibly
mitigated by increasing width. Numerics demonstrate some promise. Bridges understanding
between different forms of quantum algorithm design.



