
Double-bracket  
quantum algorithms
Nelly Ng 
Nanyang Technological University 
Singapore



@ NTU



Quantum field 
simulators

Quantum 
algorithms

Quantum 
communications

Quantum 
resource 
theories



An ongoing journey…

Double-bracket quantum algorithms for diagonalization

Quantum 8, 1316 (2024) 


Quantum Dynamic Programming

Phys. Rev. Lett. 134, 180602 (2025)


Double-bracket quantum algorithms for quantum imaginary-time evolution

arXiv:2412.04554


Double-bracket algorithm for quantum signal processing without post-selection 
arXiv:2504.01077


Grover's algorithm is an approximation of imaginary-time evolution

arXiv:2507.15065

https://arxiv.org/abs/2412.04554
https://arxiv.org/abs/2504.01077


Marek Gluza Jeongrak Son Tiang Bi Hong

Yudai Suzuki

Yours truly :)

Zoe Holmes
EPFL, Switzerland

NTU Singapore

Raphael Seidel
Fraunhofer, Germany

René Zander



Outline

What is a double-bracket flow equation?


How do we implement a double-bracket flow algorithmically?


What is the steady state of a double-bracket flow?


What are the implications for the above?



Outline

What is a double-bracket flow equation?


How do we implement a double-bracket flow algorithmically?


What is the steady state of a double-bracket flow?


What are the implications for the above?



The story starts with double-bracket flows by Brockett 1991

·N(t) = [N(t), [N(t), H]]
 are symmetric, real  matricesH, N n × n

A rate equation for the matrix , which is 
determined by a “double bracket (commutator)”.

N(t)

The flow equation is derived assuming that dynamics on  
trace out a steepest descent that optimizes , where 

,  being a continuously parametrized 
orthogonal matrix

N(t)
tr(HN(t))

N(t) = O(t)N(0)OT(t) O(t)



·N(t) = [N(t), [N(t), H]]
 are symmetric, real  matricesH, N n × n

Observation by Brockett: if  is diagonal and non-
degenerate, and  is symmetric, then 

H
N(0)

N(∞) := lim
t→∞

N(t)

exists and is a diagonal matrix

A rate equation for the matrix , which is 
determined by a “double bracket (commutator)”.

N(t)

The story starts with double-bracket flows by Brockett 1991



The story starts with Brockett 1991

·N(t) = [N(t), [N(t), H]]

Proof sketch (generalization for non-degenerate H and complex matrices also possible): 


1) consider 


2) note that commutators are antisymmetric, so , 


meaning that  is monotonically increasing, and upper bounded, i.e. its derivative 
goes to 0. This can happen only if  commute. Given that we assume  non-
degenerate, this means  becomes diagonal.

d
dt

tr(HN) = tr N[H, [H, N]] = − tr(HN − NH)2

d
dt

tr(HN) = tr(HN − NH)(HN − NH)T

tr(HN)
N, H H

N

A rate equation for the matrix , which is 
determined by a “double bracket (commutator)”

N(t)

 are symmetric, real  matricesH, N n × n



Implication of Brockett’s formula 
for quantum many-body systems

Głazek, Wilson, and Wegner, 1993-1994: applied flow 
equations for Hamiltonians of many-body systems

Systematic exposition of technical 
tools surrounding Brockett’s flow 
equation



A double-braket flow for quantum states

∂ρ(t)
∂t

= [ρ(t), [ρ(t), − Ĥ]]

Where  is the Hamiltonian of the systemĤ

Brockett, Glazek, Wilson and Wegner’s results

 collectively tell us that as  increases, 


 becomes increasingly diagonal in the basis of ; 

and eventually “equilibrates” to a steady, energy-incoherent state

t
ρ(t) Ĥ



Double-bracket flow vs the von Neumann equation

∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]

How can we implement this?

∂ρ(t)
∂t

= i[ρ(t), Ĥ]

ρ(t) = e−iĤtρ(0)eiĤt

LinearNon-linear

Natural time-evolution
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1) Assume first that is pure. Note that we can then 
rewrite the double-bracket equation into its action on the pure state,

ρ(t) = |Ψ(t)⟩⟨Ψ(t) |

∂t |Ψ(t)⟩ = [ρ(t), Ĥ] |Ψ(t)⟩

2) For short times , we have thatΔt |Ψ(Δt)⟩ ≈ eΔt[ρ(0),Ĥ] |Ψ(0)⟩

Unitary, since  is anti-Hermitian[ρ(0), Ĥ]

A recipe to approximately implement DBF ∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]
M. Gluza, Quantum 8, 1316 (2024)



3) Recall product formulas for small ,s

es[A,B] ≈ ei sB ei sA e−i sB e−i sA + 𝒪(s3/2)
4) Note that the above, applied to our exponential map  gives eΔt[ρ,Ĥ]

eΔt[ρ(0),Ĥ] ≈ ei ΔtĤ ei Δtρ(0) e−i ΔtĤ e−i Δtρ(0) + 𝒪(Δt3/2)
Backward and forward usual time evolution

“Reflection operators around ”ρ(0)

A recipe to approximately implement DBF ∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]
M. Gluza, Quantum 8, 1316 (2024)



5) In the next time step, the map needs to be updated to  !    

    Generally, this gives us a recursive formula

eΔt[ρ(Δt),Ĥ]

|Ψ(t)⟩ Rρ(t) (− Δt) RH (− Δt) ≈ |Ψ(t + Δt)⟩Rρ(t) ( Δt) RH ( Δt)
* freedom to choose time step size in every iteration

In fact, the first reflector is unnecessary:

|Ψ(t)⟩ RH (− Δt) ≈ |Ψ(t + Δt)⟩Rρ(t) ( Δt) RH ( Δt)

A recipe to approximately implement DBF ∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]
M. Gluza, Quantum 8, 1316 (2024)



Double-bracket algorithms are an example of quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions: 

๏ The th recursive step  is a unitary and depends on the previous 

result .

๏ Initial state  and  are known and given

๏ The exact form of  as a function of  is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025) 



Naive implementation (unfolding) leads to exponential circuit depth

Let’s look at 

the reflection Û(ρ) = eisρ

๏ Observe that since we do know , and furthermore , we also 

have that , and  is possible to implement without 

knowing  — we just need to call the unitary  and its inverse.

๏ This example is trivial on its own….

๏ However,  is not so trivial, and yet we still have 

.

๏ For a more general unitary , we still can do this:  

is possible if we call the unitary  a number of  times.

ρ0 ρ1 = Û(ρ0) ρ0 (Û(ρ0))†

eisρ1 = Û(ρ0)eisρ0(Û(ρ0))† Û(ρ1)
ρ1 Û(ρ0)

Û(ρ) = V1 ⋅ eisρ ⋅ V2

Û(ρ1) = Û(ρ0) ⋅ eisρ0 ⋅ Û(ρ0)†

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0 Û(ρ1)

Û(ρ0) 2L

Remember: we assume we are given  and , our 
goal is to implement 

ρ0 Û(ρ0)

Û(ρ1)

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025) 



Naive implementation (unfolding) leads to exponential circuit depth

Sticking with the more general example of , to 
execute , 

๏ we call  a number of  times,

๏ each call for  is done by calling  for  times,

๏ Hence, the implementation of  requires  calls of . Similarly, 

 requires  calls of …

๏ In other words, 


๏  steps (i.e. circuit depth) is required for 

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ2)

Û(ρ1) 2L
Û(ρ1) Û(ρ0) 2L

Û(ρ2) 4L2 Û(ρ0)

Û(ρ3) 8L3 Û(ρ0)

eisρn = Û(ρn−1)⋯Û(ρ0)eisρ0(Û(ρ0))†⋯(Û(ρn−1))†

O((2L)N) Û(ρN−1)

unfolding, reminiscent of 
classical naive methods 

without memory

Surely it’ll be faster to compute this if we have a dynamic version of quantum computing, 
making use of quantum memory?

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025) 



To do so, we need to consider circuits that allow us to take in instructions 
encoded in the form of quantum states ,ρk

Û(ρk)σÛ(ρk)†

ρk

σ

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025) 

Building a dynamic implementation via quantum instructions



Density Matrix Exponentiation

ρ

σ eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

Suppose we want  
where 

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ

One can show that

∥ℰ(ρ)
s ( ∙ ) − e−isρ( ∙ )eisρ∥ = O(s2)

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)



Improvement via DME shown for sample 
complexity in Hamiltonian simulation, in 
comparison to tomographic methods
Kimmel et al., npj QI 3, 13 (2017)

Generalizations to Hermitianicity-preserving 
maps exist
Wei. et al, arXiv:2308.07956 (2023)

ρ

σ eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

Density Matrix Exponentiation Suppose we want  
where 

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ
Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)



σ

ρ

eis′￼
̂S ℰ(ρ)(σ)

ρ

eis′￼
̂S

ρ

eis′￼
̂S…

M times

To achieve a higher accuracy, one can use more copies, e.g.  copies of , with 
smaller values of :

M ρ
s′￼ = s/M

∥ℰ(ρ)
s/M ∘ ⋯ ∘ ℰ(ρ)

s/M( ∙ ) − e−isρ( ∙ )eisρ∥ = O(s2/M) ϵ ∝ M−1, or

Density Matrix Exponentiation
Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025) 



Long story short:  

Exponential circuit depth of double-brackets can be mitigated by a 
quantum notion of dynamic programming (QDP), 
and this comes at the expense of a higher circuit width. 

For quantum recursions, QDP provides flexibility to mitigate tradeoffs 
between depth vs width requirements

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025) 
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Double-bracket flow is a Riemannian gradient descent for minimizing energy
M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Brocket, 1991

∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]

The double-bracket flow equation

is a gradient descent where the 
cost function is given as the 
average energy,

∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]] = − gradρ(t)
1
2

∥ρ(t) − Ĥ∥2
HS = − gradρ(t) ⟨Ĥ⟩t



Imaginary-time evolution is a framework for minimizing energy
M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

|Ψ(t)⟩ =
e−tĤ |Ψ0⟩

∥e−tĤ |Ψ0⟩∥
, t ∈ ℝ

Note that for , all higher energy populations become suppressed by , 
so the renormalized state should converge to the ground state of the system.


ITE is a standard paradigm for ground state preparation, but recipe for 
implementation is not always clear, and usually it is compiled variationally…

t → ∞ e−tĤ

Are DBFs and ITE related to 
one another? 

If so, how exactly?



∂ρ(t)
∂t

= [ρ(t), [ρ(t), − Ĥ]]

Assuming the initial state 
 is 

pure
ρ(0) = |Ψ(0)⟩⟨Ψ(0) |

|Ψ(t)⟩ =
e−tĤ |Ψ0⟩

∥e−tĤ |Ψ0⟩∥
, t ∈ ℝ

Imaginary-time evolution is a solution!

Implications: The explicit 
recipe for DBQAs can be used 
to implement ITE.

Imaginary-time evolution is the solution for double-bracket flow equation
M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Guarantees for ITE energy decrease: fluctuation-refrigeration relation

|Ψ(τ)⟩ =
e−τĤ |Ψ0⟩

∥e−τĤ |Ψ0⟩∥
, τ ∈ ℝ

Taking the ITE state

A direct computation shows that
∂E(τ)

∂τ
= − 2V(τ),

Where  are the average energy and energy fluctuations of E(τ), V(τ) |Ψ(τ)⟩

(We switch  to  to remind that this is not real 
“time” as we physically think of)

t τ

The recipe for implementing ITE with double-
brackets should give us something similar…

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Fluctuation-refrigeration relation for DB-QITE

Initialize our system in some , and apply the recursive DB approximate 
implementation for ITE: in particular, in the -th step, for a time step of ,

|Ψ0⟩
k Δτ = sk

Ek+1 ≤ Ek − 2skVk + 𝒪(s2
k )

|Ψk⟩ RH (− sk) |Ψk+1⟩Rρk ( sk) RH ( sk)

We get

In particular, if the step sizes are chosen such that , thensk ≤ 2Vk ⋅ [5ϵk∥Ĥ∥4]
−1

Ek+1 ≤ Ek − skVk

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Guarantees of fidelity convergence for DB-QITE

Given the system Hamiltonian , initialize system in some , which has a 
fidelity  to the ground state of . 

Then there is a way to choose the time steps in the DB-QITE algorithm, such that 
the fidelity to ground state at step ,

Ĥ |Ψ0⟩
F0 Ĥ

k

(Exponential 
convergence)

,        for Fk ≥ 1 − qk q = 1 −
Δ2F0

12∥Ĥ∥3
: Spectral gapΔ

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Numerical performance of DB-QITE
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1d Heisenberg model for L=20 
qubits, where  is a warm-
start state output from a variational 
circuit.  are ground state and 
first excited state energies.


- systematic decrease of energy 
observed as predicted, for small 
number of iterations.

|HVA⟩

λ0, λ1

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Pitting DB-QITE numerically against Quantum Phase Estimation
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Observations:


- In the low CZ count regime (for 
near-term processors), DB-QITE 
outperforms QPE 


- In high CZ count regime (e.g. 
fault-tolerant scenarios), QPE 
outperforms* DB-QITE

- Assumptions*: favourable 

conditions for QPE, e.g. one 
knows the value of .λ0

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554



Pitting DB-QITE numerically against Quantum Phase Estimation
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M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Observations:


- Deterioration of QPE 
performance when ignorance 
of  leads to rescaling of the 
Hamiltonian spectrum


- DB-QITE unaffected.

λ0
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Can DBQAs do other things?


How are they related to other known 
types of quantum algorithms?



An alternative framework to think about quantum computation

Quantum signal processing: the action of a polynomial function ,p(Ĥ)

|Ψ′￼⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some Hermitian Ĥ

Ex:


Real-time evolution: 


Imaginary-time evolution: 


Matrix inversion: 

p(Ĥ) ≈ exp(iĤt)
p(Ĥ) ≈ exp(−Ĥτ)

p(Ĥ) ≈ Ĥ−1

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

p(Ĥ) =
K

∏
k=1

(H − αkI),

where  are complex numbersαk

A general, -degree polynomial 
 can be written as

K
p(Ĥ)



An alternative framework to think about quantum computation

Typical implementation of QSP : qubitization, linear combination of unitaries (LCU)

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

repeat until 
success

Signal operators : feed 
information about 


Signal processing operators 
: feed choice of phases 

that relate to roots of 


Initialize system in  with 
some ancillas, and at the end 
measure ancillas. Success can 
be associated with measuring 
000…0 at the end.

W(H)
H

Sz(ϕk)
p(H)

|Ψ⟩



An alternative framework to think about quantum computation
Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

repeat until 
success

General challenge:


Post-selection often 
necessary, leading to 
probabilistic success 
(sometime exponentially 
small in system size)

Typical implementation of QSP : qubitization, linear combination of unitaries (LCU)



An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial  for some 
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of !sΨ

sΨ =
−1
VΨ

arccos
EΨ − α

VΨ + (EΨ − α)2

In particular,  depends on the expectation 
value and variance of  for the state , i.e.

sΨ
Ĥ Ψ

Note that this is an equality, not an approximation! 

In particular,  is not small, but is a value that depends on the state .sΨ Ψ

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077



An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial  for some 
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

Proof sketch:

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

esΨ[Ψ,Ĥ] =
∞

∑
k=0

sk

k!
[Ψ, Ĥ]k

1) Expand the exponential, 2) Look at the first order term acting on ,Ψ

[Ψ, Ĥ] |Ψ⟩ = ΨĤ |Ψ⟩ − ĤΨ |Ψ⟩
= EΨ |Ψ⟩ − Ĥ |Ψ⟩



An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial  for some 
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

Proof sketch:

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

3) Look at the second order term,

[Ψ, Ĥ]2 |Ψ⟩ = E2
Ψ |Ψ⟩ − EΨH |Ψ⟩ − ⟨ΨH2⟩Ψ |Ψ⟩ + EΨH |Ψ⟩

= − VΨ |Ψ⟩ .

Although  is in general arbitrary,  
its action on  is “effectively” identity

([Ψ, Ĥ])2

|Ψ⟩



An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial  for some 
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

Proof sketch:

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

4) This means that odd versus even terms in the exponential can be grouped into 
components of  and :|Ψ⟩ Ĥ |Ψ⟩

es[Ψ,Ĥ] |Ψ⟩ = a(s, EΨ, VΨ) |Ψ⟩ + b(s, EΨ, VΨ)Ĥ |Ψ⟩ 🎉



An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial  for some 
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

To implement this exponential, we again use group commutators but don’t (yet) 
need the recursive structure here as compared to DB-QITE, just:

es[Ψ,Ĥ] = (eiaΨeiaĤe−iaΨe−iaĤ)
N

+ O (s3/2/ N)

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077



An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial  for some 
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,H] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

What if  ?α ∈ ℂ

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

I can then start with  for some , and observe that(Ĥ − aI) a ∈ ℝ

(I − rΨ)(Ĥ − aI) |Ψ⟩ = Ĥ |Ψ⟩ − α |Ψ⟩ + r |Ψ⟩⟨Ψ | Ĥ |Ψ⟩

EΨ

− αr |Ψ⟩

Note that since  is pure, we have .Ψ eiθΨ = I + (eiθ − 1)Ψ

r ∈ ℂ

An additional  allows us to address complex rootseiθΨ



An alternative framework to think about quantum computation

K−1

∏
k=0

eiθkΨkesk[Ψk,Ĥ] |Ψ⟩,
for some values of θk, sk

Recursiveness comes in here, in particular one 
needs to estimate  in order to determine 
implementation parameters 

Ek, Vk
sk+1, θk+1

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

Extending to general polynomials, DBQAs provide us a recipe to implement any 

QSP protocol for :|Ψ′￼⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥



An alternative framework to think about quantum computation

Summarizing DB method for QSP

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

No ancillas or post-selection


Instead, estimates of  
required at every turn so that 

 can be chosen for 
the next iteration


Supplementary heuristics can 
also be used to choose 

Ek, Vk

sk+1, θk+1

sk+1, θk+1



Recall that Grover’s algorithm interleaves:


- oracles , where projects onto solution states, and 


- reflectors  around initial state.

Uf(β) = eiβHf Hf = ∑
x∈sol.

|x⟩⟨x |

R(α) = eiαψ0

Grover’s algorithm looks eeriely similar to DBQA reflectors…
Y.Suzuki, M.Gluza,,J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

|ψ0⟩ D (αk) ≈ |ψ*⟩Uf(βk)

k times

Nielsen and Chuang: can be seen as doing Hamiltonian simulation with  and trotterizingĤ = Hf + Hi



… because it approximates DBFs!
Y.Suzuki, M.Gluza,,J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065



… because it approximates DBFs!
Y.Suzuki, M.Gluza,,J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

Brief recap of results:


- ITE traces a geodesic for unstructured 
search,


- ITE’s geodesic length determines 
query complexity of Grover’s 
algorithm,


- Grover iterations implement a generic 
quantum signal processing sequence 
(with appropriate choices of reflection 
angles).



Take home messages



What is a double-bracket flow equation?

In the context of quantum information, it is a non-linear Schrodinger equation. A steady state 
solution exists and is energy-diagonal

By approximating it with short-time Hamiltonian evolutions (back and forth), interleaving 
with reflections that depend on the state

How do we implement a double-bracket flow algorithmically?

We can design explicit quantum algorithms that have theoretical guarantees on performance, and 
bypass methods such as variational strategies or post-selection. The cost (depth) can be flexibly 
mitigated by increasing width. Numerics demonstrate some promise. Bridges understanding 
between different forms of quantum algorithm design. 

What are the implications for the above?

It achieves imaginary-time evolution, and is also the steepest descent on the Riemannian 
manifold for minimizing system average energy.

What is the steady state of a double-bracket flow?

Take home messages Thanks for listening! 
Happy to take questions


