
Double-bracket
quantum algorithms
Nelly Ng
Nanyang Technological University
Singapore

@ NTU

Quantum field
simulators

Quantum
algorithms

Quantum
communications

Quantum
resource
theories

An ongoing journey…

Double-bracket quantum algorithms for diagonalization

Quantum 8, 1316 (2024)

Quantum Dynamic Programming

Phys. Rev. Lett. 134, 180602 (2025)

Double-bracket quantum algorithms for quantum imaginary-time evolution

arXiv:2412.04554

Double-bracket algorithm for quantum signal processing without post-selection
arXiv:2504.01077

Grover's algorithm is an approximation of imaginary-time evolution

arXiv:2507.15065

https://arxiv.org/abs/2412.04554
https://arxiv.org/abs/2504.01077

Marek Gluza Jeongrak Son Tiang Bi Hong

Yudai Suzuki

Yours truly :)

Zoe Holmes
EPFL, Switzerland

NTU Singapore

Raphael Seidel
Fraunhofer, Germany

René Zander

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

The story starts with double-bracket flows by Brockett 1991

·N(t) = [N(t), [N(t), H]]
 are symmetric, real matricesH, N n × n

A rate equation for the matrix , which is
determined by a “double bracket (commutator)”.

N(t)

The flow equation is derived assuming that dynamics on
trace out a steepest descent that optimizes , where

, being a continuously parametrized
orthogonal matrix

N(t)
tr(HN(t))

N(t) = O(t)N(0)OT(t) O(t)

·N(t) = [N(t), [N(t), H]]
 are symmetric, real matricesH, N n × n

Observation by Brockett: if is diagonal and non-
degenerate, and is symmetric, then

H
N(0)

N(∞) := lim
t→∞

N(t)

exists and is a diagonal matrix

A rate equation for the matrix , which is
determined by a “double bracket (commutator)”.

N(t)

The story starts with double-bracket flows by Brockett 1991

The story starts with Brockett 1991

·N(t) = [N(t), [N(t), H]]

Proof sketch (generalization for non-degenerate H and complex matrices also possible):

1) consider

2) note that commutators are antisymmetric, so ,

meaning that is monotonically increasing, and upper bounded, i.e. its derivative
goes to 0. This can happen only if commute. Given that we assume non-
degenerate, this means becomes diagonal.

d
dt

tr(HN) = tr N[H, [H, N]] = − tr(HN − NH)2

d
dt

tr(HN) = tr(HN − NH)(HN − NH)T

tr(HN)
N, H H

N

A rate equation for the matrix , which is
determined by a “double bracket (commutator)”

N(t)

 are symmetric, real matricesH, N n × n

Implication of Brockett’s formula
for quantum many-body systems

Głazek, Wilson, and Wegner, 1993-1994: applied flow
equations for Hamiltonians of many-body systems

Systematic exposition of technical
tools surrounding Brockett’s flow
equation

A double-braket flow for quantum states

∂ρ(t)
∂t

= [ρ(t), [ρ(t), − Ĥ]]

Where is the Hamiltonian of the systemĤ

Brockett, Glazek, Wilson and Wegner’s results

 collectively tell us that as increases,

 becomes increasingly diagonal in the basis of ;

and eventually “equilibrates” to a steady, energy-incoherent state

t
ρ(t) Ĥ

Double-bracket flow vs the von Neumann equation

∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]

How can we implement this?

∂ρ(t)
∂t

= i[ρ(t), Ĥ]

ρ(t) = e−iĤtρ(0)eiĤt

LinearNon-linear

Natural time-evolution

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

1) Assume first that is pure. Note that we can then
rewrite the double-bracket equation into its action on the pure state,

ρ(t) = |Ψ(t)⟩⟨Ψ(t) |

∂t |Ψ(t)⟩ = [ρ(t), Ĥ] |Ψ(t)⟩

2) For short times , we have thatΔt |Ψ(Δt)⟩ ≈ eΔt[ρ(0),Ĥ] |Ψ(0)⟩

Unitary, since is anti-Hermitian[ρ(0), Ĥ]

A recipe to approximately implement DBF ∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]
M. Gluza, Quantum 8, 1316 (2024)

3) Recall product formulas for small ,s

es[A,B] ≈ ei sB ei sA e−i sB e−i sA + 𝒪(s3/2)
4) Note that the above, applied to our exponential map gives eΔt[ρ,Ĥ]

eΔt[ρ(0),Ĥ] ≈ ei ΔtĤ ei Δtρ(0) e−i ΔtĤ e−i Δtρ(0) + 𝒪(Δt3/2)
Backward and forward usual time evolution

“Reflection operators around ”ρ(0)

A recipe to approximately implement DBF ∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]
M. Gluza, Quantum 8, 1316 (2024)

5) In the next time step, the map needs to be updated to !

 Generally, this gives us a recursive formula

eΔt[ρ(Δt),Ĥ]

|Ψ(t)⟩ Rρ(t) (− Δt) RH (− Δt) ≈ |Ψ(t + Δt)⟩Rρ(t) (Δt) RH (Δt)
* freedom to choose time step size in every iteration

In fact, the first reflector is unnecessary:

|Ψ(t)⟩ RH (− Δt) ≈ |Ψ(t + Δt)⟩Rρ(t) (Δt) RH (Δt)

A recipe to approximately implement DBF ∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]
M. Gluza, Quantum 8, 1316 (2024)

Double-bracket algorithms are an example of quantum recursions

ρn = Û(ρn−1)ρn−1(Û(ρn−1))†

Assumptions:

๏ The th recursive step is a unitary and depends on the previous

result .

๏ Initial state and are known and given

๏ The exact form of as a function of is known

n Û(ρn−1)

ρn−1

ρ0 Û(ρ0)

Û(ρ) ρ

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Naive implementation (unfolding) leads to exponential circuit depth

Let’s look at

the reflection Û(ρ) = eisρ

๏ Observe that since we do know , and furthermore , we also

have that , and is possible to implement without

knowing — we just need to call the unitary and its inverse.

๏ This example is trivial on its own….

๏ However, is not so trivial, and yet we still have

.

๏ For a more general unitary , we still can do this:

is possible if we call the unitary a number of times.

ρ0 ρ1 = Û(ρ0) ρ0 (Û(ρ0))†

eisρ1 = Û(ρ0)eisρ0(Û(ρ0))† Û(ρ1)
ρ1 Û(ρ0)

Û(ρ) = V1 ⋅ eisρ ⋅ V2

Û(ρ1) = Û(ρ0) ⋅ eisρ0 ⋅ Û(ρ0)†

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0 Û(ρ1)

Û(ρ0) 2L

Remember: we assume we are given and , our
goal is to implement

ρ0 Û(ρ0)

Û(ρ1)

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Naive implementation (unfolding) leads to exponential circuit depth

Sticking with the more general example of , to
execute ,

๏ we call a number of times,

๏ each call for is done by calling for times,

๏ Hence, the implementation of requires calls of . Similarly,

 requires calls of …

๏ In other words,

๏ steps (i.e. circuit depth) is required for

Û(ρ) = ̂VLeisLρ ̂VL−1⋯ ̂V1eis1ρ ̂V0

Û(ρ2)

Û(ρ1) 2L
Û(ρ1) Û(ρ0) 2L

Û(ρ2) 4L2 Û(ρ0)

Û(ρ3) 8L3 Û(ρ0)

eisρn = Û(ρn−1)⋯Û(ρ0)eisρ0(Û(ρ0))†⋯(Û(ρn−1))†

O((2L)N) Û(ρN−1)

unfolding, reminiscent of
classical naive methods

without memory

Surely it’ll be faster to compute this if we have a dynamic version of quantum computing,
making use of quantum memory?

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

To do so, we need to consider circuits that allow us to take in instructions
encoded in the form of quantum states ,ρk

Û(ρk)σÛ(ρk)†

ρk

σ

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Building a dynamic implementation via quantum instructions

Density Matrix Exponentiation

ρ

σ eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

Suppose we want
where

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ

One can show that

∥ℰ(ρ)
s (∙) − e−isρ(∙)eisρ∥ = O(s2)

Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

Improvement via DME shown for sample
complexity in Hamiltonian simulation, in
comparison to tomographic methods
Kimmel et al., npj QI 3, 13 (2017)

Generalizations to Hermitianicity-preserving
maps exist
Wei. et al, arXiv:2308.07956 (2023)

ρ

σ eis ̂S

̂S : SWAP operator

ℰ(ρ)(σ)

Density Matrix Exponentiation Suppose we want
where

Û(ρ)σÛ(ρ)†

Û(ρ) = eisρ
Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)

σ

ρ

eis′￼
̂S ℰ(ρ)(σ)

ρ

eis′￼
̂S

ρ

eis′￼
̂S…

M times

To achieve a higher accuracy, one can use more copies, e.g. copies of , with
smaller values of :

M ρ
s′￼ = s/M

∥ℰ(ρ)
s/M ∘ ⋯ ∘ ℰ(ρ)

s/M(∙) − e−isρ(∙)eisρ∥ = O(s2/M) ϵ ∝ M−1, or

Density Matrix Exponentiation
Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Long story short:

Exponential circuit depth of double-brackets can be mitigated by a
quantum notion of dynamic programming (QDP),
and this comes at the expense of a higher circuit width.

For quantum recursions, QDP provides flexibility to mitigate tradeoffs
between depth vs width requirements

Son, Gluza, Takagi, N.Ng, Phys. Rev. Lett. 134, 180602 (2025)

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

Double-bracket flow is a Riemannian gradient descent for minimizing energy
M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Brocket, 1991

∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]]

The double-bracket flow equation

is a gradient descent where the
cost function is given as the
average energy,

∂ρ(t)
∂t

= − [ρ(t), [ρ(t), Ĥ]] = − gradρ(t)
1
2

∥ρ(t) − Ĥ∥2
HS = − gradρ(t) ⟨Ĥ⟩t

Imaginary-time evolution is a framework for minimizing energy
M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

|Ψ(t)⟩ =
e−tĤ |Ψ0⟩

∥e−tĤ |Ψ0⟩∥
, t ∈ ℝ

Note that for , all higher energy populations become suppressed by ,
so the renormalized state should converge to the ground state of the system.

ITE is a standard paradigm for ground state preparation, but recipe for
implementation is not always clear, and usually it is compiled variationally…

t → ∞ e−tĤ

Are DBFs and ITE related to
one another?

If so, how exactly?

∂ρ(t)
∂t

= [ρ(t), [ρ(t), − Ĥ]]

Assuming the initial state
 is

pure
ρ(0) = |Ψ(0)⟩⟨Ψ(0) |

|Ψ(t)⟩ =
e−tĤ |Ψ0⟩

∥e−tĤ |Ψ0⟩∥
, t ∈ ℝ

Imaginary-time evolution is a solution!

Implications: The explicit
recipe for DBQAs can be used
to implement ITE.

Imaginary-time evolution is the solution for double-bracket flow equation
M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Guarantees for ITE energy decrease: fluctuation-refrigeration relation

|Ψ(τ)⟩ =
e−τĤ |Ψ0⟩

∥e−τĤ |Ψ0⟩∥
, τ ∈ ℝ

Taking the ITE state

A direct computation shows that
∂E(τ)

∂τ
= − 2V(τ),

Where are the average energy and energy fluctuations of E(τ), V(τ) |Ψ(τ)⟩

(We switch to to remind that this is not real
“time” as we physically think of)

t τ

The recipe for implementing ITE with double-
brackets should give us something similar…

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Fluctuation-refrigeration relation for DB-QITE

Initialize our system in some , and apply the recursive DB approximate
implementation for ITE: in particular, in the -th step, for a time step of ,

|Ψ0⟩
k Δτ = sk

Ek+1 ≤ Ek − 2skVk + 𝒪(s2
k)

|Ψk⟩ RH (− sk) |Ψk+1⟩Rρk (sk) RH (sk)

We get

In particular, if the step sizes are chosen such that , thensk ≤ 2Vk ⋅ [5ϵk∥Ĥ∥4]
−1

Ek+1 ≤ Ek − skVk

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Guarantees of fidelity convergence for DB-QITE

Given the system Hamiltonian , initialize system in some , which has a
fidelity to the ground state of .

Then there is a way to choose the time steps in the DB-QITE algorithm, such that
the fidelity to ground state at step ,

Ĥ |Ψ0⟩
F0 Ĥ

k

(Exponential
convergence)

, for Fk ≥ 1 − qk q = 1 −
Δ2F0

12∥Ĥ∥3
: Spectral gapΔ

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Numerical performance of DB-QITE

0 1 2 3 4 5
Steps k

°30

°31

°32

°33

°34

°35

E
ne

rg
y

E
k

a)

∏1

∏0

DB-QITE for L = 20

|!0i = |Singleti = 2°L/4(|01i ° |10i)≠L/2

|!0i = |HVAi = UHVA|Singleti

102 103 104 105

Number of CZ gates

0.8

0.9

1.0

F
id

el
it
y

F
k

b) DB-QITE and QPE for |HVAi

QPE
L = 12
L = 16
L = 20

k = 0

k = 1
k = 2

102 103 104 105

Number of CZ gates

0.8

0.9

1.0
c) DB-QITE vs. spectral rescalings of QPE

DB-QITE
QPE [0, 1)
QPE [0, 0.5)
QPE [0, 0.1)

0.8

0.9

1.0

DB-QITE
L = 12
L = 16
L = 20

1d Heisenberg model for L=20
qubits, where is a warm-
start state output from a variational
circuit. are ground state and
first excited state energies.

- systematic decrease of energy
observed as predicted, for small
number of iterations.

|HVA⟩

λ0, λ1

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Pitting DB-QITE numerically against Quantum Phase Estimation

0 1 2 3 4 5
Steps k

°30

°31

°32

°33

°34

°35

E
ne

rg
y

E
k

a)

∏1

∏0

DB-QITE for L = 20

|!0i = |Singleti = 2°L/4(|01i ° |10i)≠L/2

|!0i = |HVAi = UHVA|Singleti

102 103 104 105

Number of CZ gates

0.8

0.9

1.0

F
id

el
it
y

F
k

b) DB-QITE and QPE for |HVAi

QPE
L = 12
L = 16
L = 20

k = 0

k = 1
k = 2

102 103 104 105

Number of CZ gates

0.8

0.9

1.0
c) DB-QITE vs. spectral rescalings of QPE

DB-QITE
QPE [0, 1)
QPE [0, 0.5)
QPE [0, 0.1)

0.8

0.9

1.0

DB-QITE
L = 12
L = 16
L = 20

Observations:

- In the low CZ count regime (for
near-term processors), DB-QITE
outperforms QPE

- In high CZ count regime (e.g.
fault-tolerant scenarios), QPE
outperforms* DB-QITE

- Assumptions*: favourable

conditions for QPE, e.g. one
knows the value of .λ0

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Pitting DB-QITE numerically against Quantum Phase Estimation

0 1 2 3 4 5
Steps k

°30

°31

°32

°33

°34

°35

E
ne

rg
y

E
k

a)

∏1

∏0

DB-QITE for L = 20

|!0i = |Singleti = 2°L/4(|01i ° |10i)≠L/2

|!0i = |HVAi = UHVA|Singleti

102 103 104 105

Number of CZ gates

0.8

0.9

1.0

F
id

el
it
y

F
k

b) DB-QITE and QPE for |HVAi

QPE
L = 12
L = 16
L = 20

k = 0

k = 1
k = 2

102 103 104 105

Number of CZ gates

0.8

0.9

1.0
c) DB-QITE vs. spectral rescalings of QPE

DB-QITE
QPE [0, 1)
QPE [0, 0.5)
QPE [0, 0.1)

0.8

0.9

1.0

DB-QITE
L = 12
L = 16
L = 20

M.Gluza,,J.Son, B.H.Tiang,,R. Zander, R. Seidel, Y.Suzuki, Z.Holmes, N.Ng. arXiv:2412.04554

Observations:

- Deterioration of QPE
performance when ignorance
of leads to rescaling of the
Hamiltonian spectrum

- DB-QITE unaffected.

λ0

Outline

What is a double-bracket flow equation?

How do we implement a double-bracket flow algorithmically?

What is the steady state of a double-bracket flow?

What are the implications for the above?

Can DBQAs do other things?

How are they related to other known
types of quantum algorithms?

An alternative framework to think about quantum computation

Quantum signal processing: the action of a polynomial function ,p(Ĥ)

|Ψ′￼⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some Hermitian Ĥ

Ex:

Real-time evolution:

Imaginary-time evolution:

Matrix inversion:

p(Ĥ) ≈ exp(iĤt)
p(Ĥ) ≈ exp(−Ĥτ)

p(Ĥ) ≈ Ĥ−1

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

p(Ĥ) =
K

∏
k=1

(H − αkI),

where are complex numbersαk

A general, -degree polynomial
 can be written as

K
p(Ĥ)

An alternative framework to think about quantum computation

Typical implementation of QSP : qubitization, linear combination of unitaries (LCU)

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

repeat until
success

Signal operators : feed
information about

Signal processing operators
: feed choice of phases

that relate to roots of

Initialize system in with
some ancillas, and at the end
measure ancillas. Success can
be associated with measuring
000…0 at the end.

W(H)
H

Sz(ϕk)
p(H)

|Ψ⟩

An alternative framework to think about quantum computation
Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

repeat until
success

General challenge:

Post-selection often
necessary, leading to
probabilistic success
(sometime exponentially
small in system size)

Typical implementation of QSP : qubitization, linear combination of unitaries (LCU)

An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial for some
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of !sΨ

sΨ =
−1
VΨ

arccos
EΨ − α

VΨ + (EΨ − α)2

In particular, depends on the expectation
value and variance of for the state , i.e.

sΨ
Ĥ Ψ

Note that this is an equality, not an approximation!

In particular, is not small, but is a value that depends on the state .sΨ Ψ

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial for some
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

Proof sketch:

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

esΨ[Ψ,Ĥ] =
∞

∑
k=0

sk

k!
[Ψ, Ĥ]k

1) Expand the exponential, 2) Look at the first order term acting on ,Ψ

[Ψ, Ĥ] |Ψ⟩ = ΨĤ |Ψ⟩ − ĤΨ |Ψ⟩
= EΨ |Ψ⟩ − Ĥ |Ψ⟩

An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial for some
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

Proof sketch:

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

3) Look at the second order term,

[Ψ, Ĥ]2 |Ψ⟩ = E2
Ψ |Ψ⟩ − EΨH |Ψ⟩ − ⟨ΨH2⟩Ψ |Ψ⟩ + EΨH |Ψ⟩

= − VΨ |Ψ⟩ .

Although is in general arbitrary,
its action on is “effectively” identity

([Ψ, Ĥ])2

|Ψ⟩

An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial for some
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

Proof sketch:

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

4) This means that odd versus even terms in the exponential can be grouped into
components of and :|Ψ⟩ Ĥ |Ψ⟩

es[Ψ,Ĥ] |Ψ⟩ = a(s, EΨ, VΨ) |Ψ⟩ + b(s, EΨ, VΨ)Ĥ |Ψ⟩ 🎉

An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial for some
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,Ĥ] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

To implement this exponential, we again use group commutators but don’t (yet)
need the recursive structure here as compared to DB-QITE, just:

es[Ψ,Ĥ] = (eiaΨeiaĤe−iaΨe−iaĤ)
N

+ O (s3/2/ N)

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

An alternative framework to think about quantum computation

Observation: if we want to implement a linear polynomial for some
, then we can implement this QSP task with the following unitary

p(Ĥ) = Ĥ − αI
α ∈ ℝ

esΨ[Ψ,H] |Ψ⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥
for some value of sΨ

What if ?α ∈ ℂ

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

I can then start with for some , and observe that(Ĥ − aI) a ∈ ℝ

(I − rΨ)(Ĥ − aI) |Ψ⟩ = Ĥ |Ψ⟩ − α |Ψ⟩ + r |Ψ⟩⟨Ψ | Ĥ |Ψ⟩

EΨ

− αr |Ψ⟩

Note that since is pure, we have .Ψ eiθΨ = I + (eiθ − 1)Ψ

r ∈ ℂ

An additional allows us to address complex rootseiθΨ

An alternative framework to think about quantum computation

K−1

∏
k=0

eiθkΨkesk[Ψk,Ĥ] |Ψ⟩,
for some values of θk, sk

Recursiveness comes in here, in particular one
needs to estimate in order to determine
implementation parameters

Ek, Vk
sk+1, θk+1

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

Extending to general polynomials, DBQAs provide us a recipe to implement any

QSP protocol for :|Ψ′￼⟩ =
p(Ĥ) |Ψ⟩

∥p(Ĥ) |Ψ⟩∥

An alternative framework to think about quantum computation

Summarizing DB method for QSP

Y.Suzuki, B.H.Tiang, J.Son, N.Ng, M.Gluza,,Z.Holmes. arXiv:2504.01077

No ancillas or post-selection

Instead, estimates of
required at every turn so that

 can be chosen for
the next iteration

Supplementary heuristics can
also be used to choose

Ek, Vk

sk+1, θk+1

sk+1, θk+1

Recall that Grover’s algorithm interleaves:

- oracles , where projects onto solution states, and

- reflectors around initial state.

Uf(β) = eiβHf Hf = ∑
x∈sol.

|x⟩⟨x |

R(α) = eiαψ0

Grover’s algorithm looks eeriely similar to DBQA reflectors…
Y.Suzuki, M.Gluza,,J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

|ψ0⟩ D (αk) ≈ |ψ*⟩Uf(βk)

k times

Nielsen and Chuang: can be seen as doing Hamiltonian simulation with and trotterizingĤ = Hf + Hi

… because it approximates DBFs!
Y.Suzuki, M.Gluza,,J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

… because it approximates DBFs!
Y.Suzuki, M.Gluza,,J.Son, B.H.Tiang, N.Ng, Z.Holmes. arXiv:2507.15065

Brief recap of results:

- ITE traces a geodesic for unstructured
search,

- ITE’s geodesic length determines
query complexity of Grover’s
algorithm,

- Grover iterations implement a generic
quantum signal processing sequence
(with appropriate choices of reflection
angles).

Take home messages

What is a double-bracket flow equation?

In the context of quantum information, it is a non-linear Schrodinger equation. A steady state
solution exists and is energy-diagonal

By approximating it with short-time Hamiltonian evolutions (back and forth), interleaving
with reflections that depend on the state

How do we implement a double-bracket flow algorithmically?

We can design explicit quantum algorithms that have theoretical guarantees on performance, and
bypass methods such as variational strategies or post-selection. The cost (depth) can be flexibly
mitigated by increasing width. Numerics demonstrate some promise. Bridges understanding
between different forms of quantum algorithm design.

What are the implications for the above?

It achieves imaginary-time evolution, and is also the steepest descent on the Riemannian
manifold for minimizing system average energy.

What is the steady state of a double-bracket flow?

Take home messages Thanks for listening!
Happy to take questions

