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Catalysis in biological, chemical and physical processes

❖ Usage of additional substances to facilitate a 
process in such a way that

❖ they remain intact during a process, 

❖ the reaction rates get a significant boost


❖ Mechanism: lowering the activation energy of 
a process, catalyst can be reused


❖ Chemical production, Enzyme biology, 
photosynthesis, nuclear processes etc



The tower of Hanoi as a catalytic puzzle

❖  rods and  disks of different sizes

❖ Initially, disks arranged on a single rod, 

sorted by size, with the smallest disk on top. 

❖ Goal: find the minimal number of moves 

needed to transfer the entire stack of disks 
from one rod to another, given that disks can 
only be placed on top of larger disks.


❖ Minimally, need ; 

❖ number of optimal moves required is known 

to be 

❖ Number of optimal moves in general  is 

an open problem

k n

k = 3

2n − 1
n, k



❖ Goal: create entanglement between Atom A & B

❖ Tools: local preparations of the atoms + energy-

preserving interactions with a resonant cavity F 

❖ Protocol: 


❖ Prepare 

❖ Jaynes-Cummings interaction for suitable 

durations,

| ↑ ⟩A |0⟩F | ↓ ⟩B

Catalysis in quantum information processing 

J. I. Cirac and P. Zoller, PRA 50, 
R2799(R). 1994

UFA |0⟩F | ↑ ⟩A = 1

2
( |0⟩F | ↑ ⟩A − |1⟩F | ↓ ⟩A)

UFA |0⟩F | ↑ ⟩A = 1

2
( |0⟩F | ↑ ⟩A − |1⟩F | ↓ ⟩A)

UFB |1⟩F | ↓ ⟩B = |0⟩F | ↑ ⟩B

| ↑ ⟩A |0⟩F | ↓ ⟩B ⟶ |0⟩F ⊗
| ↓ ↑ ⟩AB + | ↑ ↓ ⟩AB

2

Also other 
states, e.g. 

GHZ



Catalysis in entanglement LOCC
Alice and Bob share an entangled state . 
They would like to create a target state  
… let’s assume that they can perform any 
local quantum operations, and also 
communication freely (classical). 

|ψ1⟩
|ψ2⟩

However, sometimes Alice and Bob can actually do it if 
they are given access to an additional bipartite entangled 
state ! After the process,  is not consumed —and 
therefore can be used repeatedly.

|ϕ⟩ |ϕ⟩

If we compare the entanglement entropy,  might 
have more entanglement than  , but still LOCC 
doesn’t enable the transition. 

- Reverse is also not possible — impasse.

- Alternatives: taking more copies of …

|ψ1⟩
|ψ2⟩

ψ1



Questions: 

❖  how can we decide if a desired process is catalytically feasible? 

❖do we find a useful catalyst (and the corresponding process)? 

❖  what are the properties of catalyst states that make them useful?  

❖  can we find lower/upper bounds to the required dimensionality of the 
catalyst? 

❖  …….

❖ The reason for being able to uncover catalysis in LOCC easily, was because we could 
mathematically identify complete state transition rules for pure bipartite quantum 
states — majorization [Nielsen, PRL 83, 436-439 (1999)]

❖ Systematically expanding the mathematical structure of majorization gives us a tool to 

investigate catalysis (shift focus from particular protocol designs to state trans. rules)



Resource theories

Free  
operations 𝒪

Free  
States 𝒮

State  
transition  

rules (resource 
monotones)

Ex:

: any protocol composed of


i) preparing local quantum states, applying local unitaries and 
measurements,

ii) exchanging classical messages,

iii) discarding physical subsystems.


: any state that can be prepared via LOCC, i.e. 
all separable states

𝒪LOCC 

𝒮LOCC 

ρAB → ρ′ AB ⇒ Erel. (ρAB) ≥ Erel. (ρ′ AB)

Ex: relative entropy of entanglement 
Erel. (ρAB) = inf

γAB∈𝒮LOCC(AB)
D (ρAB∥γAB)

State transition rules: LOCC monotones

For pure bipartite states, 
Erel( |ψ⟩AB) = H(ψA)



Generic 
quantum 

information 
 : set of all 

unital maps (or 
subsets thereof)


 :  maximally 
mixed states

𝒪

𝒮

Thermodynamics 
 : Gibbs-state 
preserving 


operations (or subsets 
thereof) 

 : thermal Gibbs 
states

𝒪

𝒮

Gaussianity  
 : Gaussian 

unitaries (or subsets 
thereof)


 : Gaussian 

 states

𝒪

𝒮

Simulation of 
quantum computers 

 : Clifford gates + 
measurement feed 
forward (or subsets 

thereof) 
 : stabiliser states

𝒪

𝒮

The essential resource-theoretic question
Given a fixed set of free channels , and free states , when is  possible?𝒪 𝒮 ρ 𝒪 ρ′ 

Others: 
non-Markovianity, Complexity, etc

Given a fixed set of free channels , and free states , and access to catalysts, 
when is  possible? (State transition conditions will be relaxed)

𝒪 𝒮
ρ 𝒪 ρ′ 

The essential catalytic question



The basic lemma of quantum catalysis

Let  be a unitary on the Hilbert space of , and consider the 
initial quantum state . 


U ℋSEC
ρS ⊗ ρE ⊗ ωC

U (ρS ⊗ ρE ⊗ ωC) U† = σSE ⊗ ωC,If for some , σSE

then there exists 

a unitary operator  such 

that .

VSE
σSE = VρSEV†



Implications of the basic lemma

(2) The final catalyst C is correlated with SE, 
i.e.


although . 
𝒰 [ρS ⊗ ρE ⊗ ωC] = σSEC ≠ σSE ⊗ ωC,

TrSE [σSEC] = ωC

(3) The set of implementable operations  
is restricted (either by practical/
experimental reasons, or fundamental 
restrictions e.g. conservation laws). While the 
unitary  exists, the channel it induces on  
is not in .

𝒪

V S
𝒪

(1) Catalysis is not exact,


 .


Therefore the state on  changes 
(at least a bit).


TrSE [𝒰 [ρSE ⊗ ωC]] ≠ ωC

C

Situations where a catalyst is useful

This was why the earlier LOCC example works!



An overview of catalytic types

Strict catalysis

Correlated 
catalysis

Infinite-
dimensional 

catalysis

State-
independent 

catalysis

Possible   is sufficiently 
(but not too) restricted

∵ 𝒪

Possible  correlations created 
between catalyst and other systems

∵

Relaxation of state transition 
conditions is qualitatively 

different across types!

Approximate 
catalysis

Arbitrarily strict 
catalysis

Marginally 
correlated catalysis

Embezzlement

Possible  catalysis is not exact∵



Example of difference between catalytic types

Strict catalysis

The above is possible iff !Hα(ψ1A
) ≥ Hα(ψ2A

), α ∈ ℝ
What other monotones remain when strict catalysis is allowed?

Strict catalysis: |ψ1⟩AB ⊗ |ϕ⟩CACB

LOCC |ψ2⟩AB ⊗ |ϕ⟩CACB

Entanglement entropy insufficient to guarantee LOCC transition!

Renyi entanglement entropies

- additive under tensor product

-  , i.e. the entanglement 

entropy is a special instance

lim
α→1

Hα(ρ) = H(ρ)

Any intuition 
behind this?

S Daftuar, M Klimesh - PRA 64, 042314, 2001



Example of difference between catalytic types

Strict catalysis

1)  is an LOCC monotone, i.e.    implies , and 

2)  is additive under tensor product, i.e. ,


Then if , this means that  , meaning that 

          remains a monotone for LOCC even when strict catalysis is allowed!

f ρAB
LOCC ρ′ AB f(ρAB) ≥ f(ρ′ AB)

f f(ρ1 ⊗ ρ2) = f(ρ1) + f(ρ2)

ρ s.c.−LOCC ρ′ f(ψ1A
⊗ ϕA) ≥ f(ψ2A

⊗ ϕA)
f

What other monotones remain when strict catalysis is allowed?

Strict catalysis: |ψ1⟩AB ⊗ |ϕ⟩CACB

LOCC |ψ2⟩AB ⊗ |ϕ⟩CACB

Monotones for s.c. are additive under tensor product

Entanglement entropy insufficient to guarantee LOCC transition!



Example of difference between catalytic types

Embezzlement

If errors are allowed on the catalyst, then it is possible to construct a family of catalyst 
states , such that for any  and any bipartite state ,
{ |μn⟩}n ε > 0 φAB⟩
|μ(n)⟩ ⊗ |00AB⟩ ↦ |μ(n)⟩ ⊗ φAB⟩

can be accomplished with fidelity better than , for all sufficiently large  without 
any communication (LO).

1 − ε n

No monotones :O

What monotones remain when embezzling is allowed?

Embezzling: |ψ1⟩AB ⊗ |ϕ⟩CACB

LOCC |ψ2⟩AB ⊗ |ϕ′ ⟩CACB
, ⟨ϕ |ϕ′ ⟩ ≥ 1 − ε



How do we make sense of embezzling?

Embezzlement

W. van Dam, P. Hayden, PRA 67, 060302 (2003)

Embezzling effects can be bounded:

results from the fact that fidelity is not 
sensitive enough to capture the difference 
in resource content between two 
quantum states, especially when the 
states are high dimensional.



Example of difference between catalytic types

Correlated catalysis: 

|ψ1⟩AB ⊗ ωCACB

LOCC ρABCACB
,

Correlating 
catalysis

1. 

2. 

ρABCACB
≈ε |ψ2⟩AB ⊗ ωCACB

ρCACB
= ωCACB

What other monotones remain when correlating catalysis is allowed?

The above is possible iff !H(ψ1A
) ≥ H(ψ2A

) Just one monotone! :O

T&C: high-dimensional catalyst required, i.e.  when .dim(C) → ∞ ε → 0



Example of difference between catalytic types

If: 

1)  is an LOCC monotone, i.e.  implies , and 

2)  is additive under tensor product, i.e. ,

3)  is super-additive, i.e. ,


Then if , this means that  . 


But that in turn means that 


 remains a monotone for LOCC even when correlating catalysis is allowed!

f ρ LOCC ρ′ f(ρ) ≥ f(ρ′ )
f f(ρ1 ⊗ ρ2) = f(ρ1) + f(ρ2)
f f(ρ′ 12) ≥ f(ρ′ 1) + f(ρ′ 2)

ρ corr.−LOCC ρ′ f (ψ1AB
⊗ ωCACB) ≥ f (ρABCACB)

f (ψ1AB) + f (ωCACB) ≳ f (ψ2AB) + f (ωCACB)
f

What monotones remain when correlating catalysis is allowed?

Correlating 
catalysis

|ψ1⟩AB ⊗ ωCACB

LOCC ρABCACB
, 1. 


2. 
ρABCACB

≈ε |ψ2⟩AB ⊗ ωCACB

ρCACB
= ωCACB



A generic remark on degradation of quantum correlations

❖ What if catalyst is correlated with an 
external system  ? 

❖ It turns out non-trivial (state-independent) 

catalysis cannot be done without the cost 
of degrading existing quantum 
correlations


❖ Catalysts look locally unaltered, but a 
reference system that has some 
“quantum memory” of catalyst can 
always detect the difference


❖ Existing classical correlations, however, 
can in general persist

R

SH Lie, N. Ng, Phys. Rev. A 108, 012417 (2023)

Catalysis

Quantum
Correlation

Degraded
Correlation

R

R



Well, at least I now know that I 
should identify which catalytic 
type I want, and check certain 

monotones to see if a state 
transition is possible. But how do 

I identify the suitable catalyst 
state, or determine the actual 

transformation?

You raise a fair point. In 
general, this is not easy….

But there are a handful of 
useful tips!



Suppose that: 

1) you can freely control on classical randomness, e.g. whenever we have a set of 
allowed/free operations  , then





is also easily implementable, and

2) we know that for sufficiently large , 


Then, we have a recipe to construct  such that 

{ℱi}i

ρS ⊗ ωA ↦ ∑
i

ℱi [ρS] ⊗ | i⟩⟨i |ωA | i⟩⟨i |

n ρ⊗n
S

𝒪 σ⊗n
S

ωC ρS ⊗ ωC
𝒪 σS ⊗ ωC

Multi-copy transformations to strict catalysis

(strict catalysis)

Catalyst dimension is 
gonna be large, though…

Generic constructions of catalyst states



Generic constructions of catalyst states

The effective channel acting on  can be written as 


Finding a correlated-catalytic transformation means finding a density operator  
such that . This is equivalent to finding fixed points of the map  
— which exists (due to Brouwer's fixed point theorem)! 

C ℰC( ⋅ ) := TrS ℰ [ρS ⊗ ( ⋅ )C]
ωC

ℰC (ωC) = ωC ℰC

Finding a catalyst when input state  and channel  is fixedρS ℰSC

min
X

0

 subject to ℰC[X] = X
X ≥ 0, Tr X = 1.

A feasible solution 

X would be a catalyst

(Can be generalized 
for e.g. approximate 
catalysis)

SDP formulation:

More in 
review…



Snapshots of catalysis for thermodynamics



Catalysis in thermal operations 

: any channel that can be written as

i) preparing a thermal state of a fixed inv. temperature ,

ii) applying a global energy-preserving unitary,

iii) discarding physical subsystems


: Thermal states of inv. temperature 

𝒪TO 
β

𝒮TO  β

For the case of energy-incoherent target 
states:

Full set of monotones for strict, arb. 
strict, correlating catalysis

For the case of energy-coherent target 
states:

Partial set of monotones?
Limits to cooling, 
formulation of the 
third law for 
quantum thermo

Efficiency of small 
heat engines

Usage of correlations 
in bypassing 
Jarzynski equality



Catalysis in thermodynamics: non-Markovian boost

Elementary Thermal Operations (ETO): 

combinations & concatenations of 2-lvl TOs


 potentially simpler to implement

 natural notion of time given by number of steps 


     (in contrast to thermal operations)

 innate Markovianity makes ETO weaker than TO 
 state transition conditions inefficient to compute

→
→

→
→

• Mechanism: catalysts store & release free energies to 
enable such transitions 


• Even small catalysts can provide substantial boost 

Δ
F 1

(ρ
)

[1
/β

]

Time steps

Total free energy

 FSC

System 

FS

Δ
F 1

[1
/β

]

Catalyst 

FC

Mutual

info.

where does 
this difference 
come from?

stored in 
catalyst and 
correlation

Jeongrak Son, Nelly Ng, arXiv:2209.15213 (2022)

➡What if the catalyst size is unbounded?



Catalysis in thermodynamics: non-Markovian boost

Energy incoherent inputs

MTO

ETO

TO

Lostaglio & Korzekwa, 

PRA 106, 012426 (2022)

Energy coherent inputs

MTO

ETO

TO

   CTO  
= CETO  
= CMTO

Under catalysis, for 
energy-coherent 

inputs

Jeongrak Son, Nelly Ng, arXiv:2303.13020 (2023)



If you’re interested, read more in our review! 
Thank you


